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ABSTRACT
Request-based applications, e.g., most server-side applications, ex-
pose services to users in a request-based paradigm, in which re-
quests are served by request-handler methods. An important task
for request-based applications is inter-request analysis, which ana-
lyzes request-handler methods that are related by inter-request data
dependencies together. However, in the request-based paradigm,
data dependencies between related request-handler methods are
implicitly established by the underlying frameworks that execute
these methods. As a result, existing analysis tools are usually lim-
ited to the scope of each single method without the knowledge of
dependencies between different methods.

In this paper, we design an approach called dataflow tunneling
to capture inter-request data dependencies from concrete applica-
tion executions and produce data-dependency specifications. Our
approach answers two key questions: (1) what request-handler
methods have data dependencies and (2) what these data depen-
dencies are. Our evaluation using applications developed with two
representative and popular frameworks shows that our approach
is general and accurate. We also present a characteristic study and
a use case of cache tuning based on the mined specifications. We
envision that our approach can provide key information to enable
future inter-request analysis techniques.

KEYWORDS
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1 INTRODUCTION
Server-side applications commonly expose services to users in
a request-based paradigm, in which user requests are served by
application-defined request-handler methods. We refer to such ap-
plications as request-based applications. Request-based applications
are playing an increasingly important role in the current software
ecosystem, providing classic web pages and emerging cloud-based
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application services. The increasing prevalence of these applica-
tions brings new demands and challenges regarding software qual-
ity, thereby calling for advanced techniques to ensure application
correctness, performance, and security.

Modern request-based applications are usually built on top of
some supporting frameworks, e.g., Spring [37] and Struts [5] for web
applications. In the request-based execution model, upon receiving
a request, the framework invokes one or more request-handler
methods, and the invoked method(s) return data objects containing
the necessary information to serve the request. These data objects
are further processed by the framework to generate a concrete
response to be sent to the user side (e.g., in the form of HTML).
While each request is served modularly, users can issue a series of
related requests, whichmay be based on the received responses (e.g.,
through a hyperlink generated dynamically from some data objects).
Therefore, the output of one serving request-handler method could
become the input of another method, creating data dependencies
between these methods. We say two request-handler methods are
related if there are data dependencies between them.

With the execution model, it is important for program analysis
techniques targeting request-based applications to track data depen-
dencies across related methods and perform inter-request analysis.
While there is a natural analogy between inter-request analysis
and interprocedural analysis [40, 43], one cannot directly apply
techniques developed for interprocedural analysis for inter-request
analysis. The challenges are mainly rooted in the way how data
dependencies between request-handler methods are established: (1)
because of the separation of server and user sides, data dependen-
cies are not directly established by propagating data objects across
methods through return values or parameters, and (2) because of the
framework, there is no explicit caller-callee relationship between
methods serving different requests. These complications make inter-
request data dependencies not perceivable by conventional inter-
procedural or summary-based analysis techniques [41, 42, 57, 58].

Existing techniques in different fields are affected by the limited
capability of conducting inter-request analysis. In the performance
field, a previous study [21] shows that many performance bugs
are caused by skippable function calls or inefficient function-call
combinations. Request-based applications are more prone to such
inefficiencies, as the request abstraction is highly modular, and
developers can easily write inefficient code spread across individual
request-handler methods. Although various techniques [13, 14, 30,
38] have been proposed to alleviate such inefficiencies, they may
not reach their full potential without inter-request capability. In the
security field, investigating malicious-data propagation is crucial.
Request-to-response propagation within each request is a common
target for existingwork [47, 53], but propagation that spansmultiple
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requests can also create vulnerabilities. Some work [1, 31] has
discussed and tried identifying such vulnerabilities by exploring
navigation sequences of web pages.

To overcome challenges and build a solid foundation for inter-
request analysis on modern request-based applications, we propose
an approach called dataflow tunneling. Our approach is based on
the key observation that framework and user behaviors are of
less interest in application-code analysis. For example, knowing
how a framework accesses some data objects is less important
than knowing what data these objects carry. Therefore, our ap-
proach effectively abstracts away the involvement of frameworks
and users in propagating data across requests, and directly exposes
data dependencies across request-handler methods. We define such
dependencies in the form of data-dependency specifications, which
describe how the output of a method tunnels (i.e., being propa-
gated and transformed) through frameworks and users to become
the input of another method. The resulting specifications provide
necessary information to allow conventional analysis techniques
to go across the boundaries of request-handler methods without
analyzing supporting frameworks or user behaviors.

Our approach analyzes concrete application executions to cap-
ture data dependencies. We design our approach with three key
techniques: (1) a static analysis on request-handler methods to
identify input and output sites where these methods and their sup-
porting framework pass data objects to each other; (2) on data
objects passing through the identified sites, an object-centric trac-
ing technique to capture object accesses and their accessed values
throughout the whole processing of every single request; and (3) a
mining technique to identify potential data dependencies between
request-handler methods in traces from different requests. With
this design, our approach adheres to the general request-based
execution model instead of specific framework implementations,
thereby avoiding ad hoc analyses on framework code.

We have implemented a prototype for Java-based web applica-
tions, and evaluated the specification accuracy and tracing overhead
on two real-world open-source applications developed with differ-
ent supporting frameworks. We have also manually inspected the
generated specifications to investigate how useful they are for pro-
gram understanding and future inter-request analysis techniques.
The results show good accuracies (above 80%) in typical configura-
tions, and suitable overheads for an in-house testing environment.
Our manual inspection helps us gain a better understanding of the
two applications. Based on the understanding, we present a use
case of the specifications in tuning object caching, which shows
promising results in database-query reduction and execution-time
reduction. We believe these specifications can help enable future
sophisticated inter-request analysis.

Overall, we make four main contributions. First, we elaborate the
importance and challenges of inter-request analysis, especially on
challenges posed bymodern frameworks. Second, we propose an ap-
proach to infer inter-request data dependencies. One novelty of our
approach is to abstract away the involvement of frameworks with-
out human-assisted modeling. Third, we prototype and evaluate our
approach on two open-source applications regarding accuracy and
overhead. Fourth, we study the data-dependency specifications gen-
erated by our prototype and present a usage scenario on how they
can help program understanding and future analysis techniques.
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Figure 1: The abstract request-based execution model

2 BACKGROUND AND MOTIVATION
We present an extended discussion on the background of request-
based applications and the challenges of inter-request data-dependency
analysis. The discussion is based on a real-world example, which
involves a popular Java request-based framework.

2.1 Background
Figure 1 illustrates the general request-based application execution
model, which captures the commonalities among applications devel-
oped with different frameworks. This abstract model shows a single
request-to-response flow. Along the flow, three major components
of a request-based application are involved: (1) request-handler
methods, (2) data objects, and (3) view templates.

Request-handler methods are the entry points of a request-based
application to process incoming requests. For each request, the
framework determines and invokes the appropriate handlermethod(s)
through a predefined request-handler mapping. The request-handler
mapping defines requests that each handler method can process.
It is specified by developers in different forms depending on the
underlying frameworks, e.g., Spring [37] uses Java annotations and
Struts [5] uses configuration files. Depending on specific framework
implementations, one or more request-handler methods may get
invoked to process one request.

During the execution of a request-handler method, it creates
data objects and passes them to the framework. These data objects
encapsulate data that are usually retrieved from a backend database.
The framework then references and uses these objects to generate
concrete responses. Based on our investigation of popular frame-
works for Java listed in an online source [49], the majority of them
allow request-handler methods to pass data objects through either
method returns or collection-based parameters, while some require
request-handler methods to use framework-specific APIs. In this
paper, we follow the object-passing model of the majority, but our
approach can be extended to include framework-specific APIs.

View templates define how data objects should be further pro-
cessed to display to the client, and such templates are usually
written in different markup languages, such as FreeMarker [4],
JSTL [35], and Velocity [3]. With the data objects from request-
handler methods, the framework chooses a view template, either
programmatically or based on a predefined view-template mapping,
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to populate a concrete view. Finally, the concretized view will be
sent to the user as the response, which can be as complex as a web
page or as simple as plain text that is serialized from data objects.

2.2 Motivating Example
Figure 2 shows an example from OpenMRS [33], which is an open-
source web-based medical-record system. It uses the Spring Frame-
work [37] as the application framework. The listed code includes
three request-handler methods implemented in Java, with excerpts
of JSP [34] files that are their corresponding view templates. The
request-handler method and view template for handling requests
to the path /patientDashboard.form are listed from lines 1 to
19. They produce an overview page for the patient specified in
the request. The method renderDashboard() takes two param-
eters: (1) an integer patientId passed in by the Spring Frame-
work as a request parameter, and (2) a ModelMap object map carry-
ing data objects to the corresponding view template. The method
uses patientId to create a Patient data object (line 7), and then
puts it into map (line 8). With the method returning the string
“patientDashboardForm” (line 10), the framework chooses the
view template patientDashboardForm.jsp (lines 14 to 19) to pro-
duce a concrete patient-overview page. The page contains a button
(line 15) that can fire another request to show some visit informa-
tion of the specified patient. This new request requires the patient
identifier to be embedded as a request parameter. At runtime, the
Spring Framework evaluates model.patient.patientId (line 18)
to fill in the request path (lines 17 - 18) with a concrete value. The
value evaluation relies on the Java reflection mechanism to find
the data object bound to model.patient, and invoke the accessor
method bound to the field name patientId. In this example, the
object is the Patient object created by renderDashboard(), and
the accessor method is Patient.getPatientId().

When a user clicks the button on the overview page, a request for
the patient’s visit is fired to the request path /admin/visits/visit.
This request is handled by the code from lines 21 to 45. Lines 21 to 27
comprise the request-handler method showForm(), and this method
requires a Visit object populated by another method getVisit()
listed from lines 28 to 38. At runtime, the Spring Framework in-
vokes getVisit() before showForm() to create the Visit object
with its corresponding Patient object from request parameters
visitId and patientId. The view template visitForm.jsp ac-
cesses the Visit and Patient objects bound to visit.patient
multiple times (lines 43 and 45) for different pieces of information.

An inter-request caching opportunity. We show that inter-request
analysis is useful to identify an optimization opportunity. For the
two requests in the example, their corresponding methods invoke
PatientService.getPatient() (lines 7 and 35), which queries a
database for patient data to create a Patient object. With inter-
request data dependencies, one can determine that the flow (lines
connected by dashed arrows) 4→7→8→18→29→35 propagates
the value of patientId from the first method invocation to the
second. This propagation hints that onemay add a cachemechanism
to cache the Patient object from the first invocation, so the cached
object is available on the second invocation without additional
queries to the database. In Section 4.6, we show a use case using
Hibernate [39], a data-access framework, to achieve such caching.

1 @Controller

2 public class PatientDashboardController {

3 @RequestMapping ("/ patientDashboard.form")

4 protected String renderDashboard(@RequestParam (" patientId ")

Integer patientId , ModelMap map , ...) {

5 // Get the patient

6 PatientService ps = Context.getPatientService ();

7 Patient patient = ps.getPatient(patientId);

8 map.put("patient", patient);

9 ...

10 return "patientDashboardForm";

11 }

12 }

14 // patientDashboardForm.jsp

15 <input type="button"

16 onclick="window.location=

17 '/admin/visits/visit.form?patientId=

18 <c:out value=${model.patient.patientId} />'"

19 .../>

21 @Controller

22 public class VisitFormController {

23 @RequestMapping ("/ admin/visits/visit")

24 public String showForm(@ModelAttribute ("visit") Visit visit ,

ModelMap model , ...) {

25 ...

26 return "/admin/visits/visitForm";

27 }

28 @ModelAttribute ("visit")

29 public Visit getVisit(@RequestParam (" visitId ") Integer visitId ,

@RequestParam (" patientId ") Integer patientId) {

30 Visit visit = null;

31 PatientService ps = Context.getPatientService ();

32 if (visitId == null && patientId != null) {

33 visit = new Visit();

34 // Get the patient and set it to the visit

35 visit.setPatient(ps.getPatient(patientId));

36 } else { ... }

37 return visit;

38 }

39 }

41 // visitForm.jsp

42 <input type="hidden" value=

43 <c:out value=${visit.patient.patientId} />

44 ... />

45 <td><c:out value=${visit.patient.personName} /></td>

Figure 2: An excerpt of three related request-handler meth-
ods and their view templates from OpenMRS. Only method
parameters related to our discussion are shown.

The challenges of inter-request data-dependency analysis. Follow-
ing the discussion in Section 1 that framework behaviors and user
interactions complicate the analysis of inter-request data depen-
dencies, we concretely discuss the challenges based on our example
with the assumption that we were to extend conventional interpro-
cedural analyses to compute inter-request data dependencies.

First, handling application components in different languages
would be necessary but ad hoc. Request-handler methods and view
templates are commonly developed in different languages, and
concrete responses can also contain scripts that perform client-
side operations to propagate data across requests. In our example,
three languages are involved to propagate the patientId value:
Java for handler methods, Expression Language [36] for evaluating
concrete values on data objects in view templates, and a piece
of JavaScript code (lines 16 to 18) to propagate the patientId
value by firing the second request from the user’s browser. As
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data propagation goes through all the three components, ad hoc
supports for different languages would be necessary to capture data
dependencies between the involved request-handler methods.

Second, analyzing framework code would be necessary but chal-
lenging to capture data propagation outside request-handler meth-
ods. The framework is the caller of request-handler methods and
view templates, and it provides the supports of parsing requests,
binding and accessing data objects, and populating concrete views.
As our example shows, the framework heavily relies on the re-
flection mechanism, which performs dynamic object instantiation
and method invocations at runtime. For instance, the framework
uses the annotation @ModelAttribute (line 28) to bind the Visit
object in Java code to the view template with a textual name visit
(line 43). It is not until the time of execution that the framework
parses these annotations and textual names, and uses the reflection
mechanism to invoke the parsed methods on the bound objects. It
is known that this runtime mechanism brings difficulties to static
analysis. Researchers have proposed different approaches to address
this problem with their own pros and cons [12, 25, 28, 45, 47, 50].

3 DATAFLOW TUNNELING
Our approach requires two artifacts: the application code of request-
handler methods specified by developers for analysis and test inputs
for generating traces. With the two artifacts, our approach performs
three key steps: (1) static analysis on request-handler methods to
identify input and output sites, (2) instrumenting the methods and
tracing application executions under test inputs, and (3) mining the
generated traces for data-dependency specifications. The results of
our approach are data-dependency specifications across request-
handler methods. Such specifications describe how the output of
a request-handler method is propagated and transformed into the
input of another request-handler method. We use the following
notations to represent data-dependency specifications:

(1) amethod
type denotes that an entity with a name a is of type and

used inmethod . We use a special notation obj to denote an entity
without a name, and we use V IEW as a specialmethod to denote
that the entity is used outside a request-handler method.

(2) a =⇒ b denotes that a is propagated to b without transforma-
tion (we omit themethod and type on a and b for simplicity). There
are two propagation channels: PARAM for propagation through a
collection-based parameter, or RETURN for propagation through
a method return. We put the propagation channel over the arrow.
For channel PARAM , we put the parameter name under the arrow.

(3) a −→ b denotes that a is transformed and then propagated to
b. We put the method name related to the transformation over the
arrow. Sometimes a may represent a collection of objects (e.g., a set
of Patient objects), while b may represent only a single value (e.g.,
the patientId of one of the objects). Such cases indicate a many-to-
one relation between a and b. We put the notation CHOICE under
the arrow to denote these cases.

With these notations, the data-dependency specifications for the
example in Figure 2 are:

obj
r enderDashboard ()
Patient

PARAM
=======⇒
map

objV IEW
Patient

Patient .дetPatient Id ()
−−−−−−−−−−−−−−−−−−−−−−→ patientId

дetV isit ()
Inteдer

(1)

obj
дetV isit ()
V isit

RETU RN
========⇒ visit

showForm()
V isit (2)

Specification (1) describes that a Patient object from the method
renderDashboard() is passed through a parameter channel map
(denoted by ⇒) to the view. Then the object is transformed by
Patient.getPatientId() into an integer, which is propagated to
the input parameter patientId of the method getVisit() (de-
noted by→). Specification (2) describes that a Visit object is re-
turned from the method getVisit(), and then the object is propa-
gated to the parameter visit of the method showForm().

3.1 Identifying Input and Output Sites
To capture data dependencies across request-handler methods, we
first need to know what input each method receives and what
output each method produces. The goal of this step is identifying
the input and output sites in each request-handler method. An input
site indicates where a handler method receives input data from the
framework, and an output site indicates where the method passes
output data to the framework. The identified sites allow the later
instrumentation and tracing step to collect necessary information.

We apply a static taint analysis to identify input and output sites,
as essentially they are sources and sinks between which data is
propagated within the scope of a request-handler method. For each
request-handler method, we start with a conservative set of sources
and then identify sinks based on a propagation graph computed by
the static taint analysis. We further filter sources and sinks using
a set of rules that incorporate the request-based execution model.
We consider variables in the resulting sources as input sites and
variables in the resulting sinks as output sites.

We define the propagation graph as follows, followed by the
rules to determine sources and sinks.

Definition 1. A Propagation Graph is a directed graph PG =
(V ,E) where V is a set of nodes for variables labeled by program
locations, and E contains edges overV . Each edgevl11 → vl22 indicates
a flow of data from variable v1 at program location l1 to v2 at l2.

In producing such propagation graphs, we consider two types
of variables as sources: (1) parameters of a request-handler method
and (2) variables that receive data from static method invocations.
These two sets of sources reflect two common ways that a request-
handler method receives request inputs from the framework: either
from parameters or through certain APIs. Starting from these source
variables, we apply conventional propagation rules to compute a
propagation graph for each method. In particular, we propagate
tainted values starting from sources through normal assignments,
and arguments and return values in method invocations. To prop-
agate through virtual method invocations, whose method bodies
cannot be determined statically for direct analysis, we introduce
two heuristics. First, if b is tainted in the case of a.m(b), a should
also be tainted (i.e., introducing an edge b → a). This rule reflects
a common pattern that the object a receives data from the object
b. For example, line 35 in Figure 2 is a typical case in which the
Visit object stores the Patient object in a field. Second, for the
case a = b .m(c), a should be tainted if b or c is tainted. This is an
over-approximation that aggressively creates possible flow edges
whenm is not available for direct analysis.
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On a propagation graph constructed based on the propagation
rules, the nodes without any incoming edges are likely sources, and
the nodes without any outgoing edges are likely sinks. We then
apply the following three rules to filter sources and sinks for input
and output sites. First, the variable in a sink is an output site if it is
a parameter (e.g., a collection object), in a return statement (e.g., an
object returned by the method), or an argument of a static method
invocation. This rule indicates that a sink variable is an output
site only if the data carried by the sink variable is visible outside a
request-handler method. Second, an object variable marked as both
a source variable and a sink variable is likely to be an output site,
as the object referenced by the variable is likely to hold new data
derived from other inputs. Later such data may be accessed outside
the request-handler method. Third, source and sink variables not
affected by the first two rules are input sites and output sites, re-
spectively. For example, we initially consider the parameter map of
renderDashboard in Figure 2 as a source, and then we find that it
acts like a sink at a later program location. With the second rule,
we classify the parameter map as an output site.

3.2 Instrumentation and Tracing
In this step, we instrument the identified input and output sites, and
then execute the application with test inputs to trace and collect
necessary information for the later mining step. For each method
execution, two sets of events are generated: input events and out-
put events. Input events record concrete input values passed into
request-handler methods by the framework, and output events
record (1) the concrete values in request responses and (2) the
method-invocation sequences representing how the framework
retrieves these values from output data objects.

We specifically design this step not to ad hoc analyze or trace
complex framework executions. Instead, this step focuses on data-
object accesses (e.g., getting an object field). This idea is based on
the observation that all framework-dependent code, regardless of
languages and the use of reflection, finally has to invoke methods
on data objects to retrieve concrete data. Therefore, tracing object
accesses is a reasonable way to observe data propagation beyond
request-handler methods and into framework and view templates.

In particular, we use a dynamic proxy-based technique on data
objects. A proxy object is a type-safe delegate of its original object.
We can replace a data object with its proxy object, and the proxy
object can intercept method invocations made on the original object
without affecting application behaviors. This technique involves
two key ideas: (1) dynamically creating proxy objects to intercept
and then dispatch method invocations to the original objects, and
(2) propagating proxy objects based on the context of method ex-
ecutions to capture framework behaviors in different execution
points. By dynamically creating and propagating proxy objects, we
can record a sequence of methods that the framework invokes on
each data object, together with concrete values returned by this
sequence. This technique allows us to capture framework behav-
iors but effectively avoid the scalability issue of ad hoc analysis on
different languages and analysis limitations caused by reflection.

Table 1 summarizes the instrumentation and tracing rules. These
rules fire tracing events and create proxy objects on demand. We
describe these rules in detail as follows.

At the entry and exit points of each request-handler method,
we instrument enterMethod(mName) and exitMethod(mName) to
record the start and end of each method execution. These points
generate events EnterMethodEvent and ExitMethodEvent (RE1 and
RE2). We introduce these events to distinguish different method ex-
ecutions. They only record the name of the method being executed.

For each variable varIn identified as an input site, we instrument
varIn = recordInput(varIn) at the beginning of the method.
For each variable varOut identified as an output site, we instru-
ment varOut = recordOutput(varOut) to a point that depends
on the output type. If varOut appears in a return statement, the
instrumentation is placed before the statement. In other cases, the
instrumentation is placed where the method first initializesvarOut :
either at the beginning of the method ifvarOut is an out-parameter,
or right after an API invocation if varOut receives a return object.
Such instrumentation serves two purposes: recording necessary
information on input and output sites, and creating proxy objects
to further trace objects passed through these sites.

The instrumented input and output sites generate events of In-
putEvent (RI1, RI2) and OutputEvent (RO1, RO2). The information
recorded in these events depends on the type of varIn or varOut: a
simple value for a simple type, or an object identifier for a complex
class. The instrumented sites also create proxy objects to replace the
original objects in order to trace method invocations. In particular,
the rules RI2 and RO2 describe two situations where proxy objects
are created. First, if an output-site variable varOut references a com-
plex object, the instrumentation creates a proxy object to replace
the referenced object (RO2). As a result, the tracing step can trace
how the request-handler method and the framework use the refer-
enced object. Second, the instrumentation creates a proxy object
on the input site that references an HttpRequest object (RI2). This
is for backward compatibility with request-handler methods that
directly access the HttpRequest object to retrieve request inputs.

With the initial proxy objects created at instrumentation sites, we
discuss rules PM1, PM2, PF1, and PF2, which specify the behaviors
of proxy objects when they intercept method invocations.

Rule PM1 or PM2 applies when a proxy object intercepts amethod
invocation within a request-handler method. If the proxy object
is an HttpRequest object, we consider that it presents an input
site, therefore an event of InputAccessEvent is fired (PM2). The
InputAccessEvent represents the behavior of retrieving request input
from the HttpRequest object, and records the return value and
argument values of the method invocation.

The cases other than invocations on an HttpRequest object
imply that the target proxy object serves as an output site of the
method, and the invocation arguments are likely to be visible and
used by the framework. Therefore, we apply PM1 to fire an event
of OutputEvent on each argument involved in the invocation, and
replace each argument that is of a complex type with a proxy object.
This rule captures output data that is passed out by the handler
method, as well as propagates proxy objects to the framework to
further trace runtime behaviors outside the method.

For invocations intercepted outside the scope of a request-handler
method, we introduce rules PF1 to trace an intermediate invoca-
tion that returns another complex object, and PF2 to trace the
final invocation that returns a simple value. These two rules are
based on the observation that the framework may invoke a series
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Table 1: Instrumentation and tracing rules. Trac Point: whether a trace event is fired on an instrumentation point (Inst) or on
a proxy object (Proxy); Exec Point: the current scope of execution, in a request-handler method or the framework; Involved
Statement: the instrumented code for an instrumentation point, the intercepted method invocation for a proxy point(obj al-
ways references a proxy object); Tracing Action and Conditions: the tracing step performs the action under certain conditions.

Rule Trac Point Exec Point Involved Statement Conditions Tracing Action
RE1 Inst Method enterMethod(mName) Fire an event of EnterMethodEvent, recording the method namemName .
RE2 Inst Method exitMethod(mName) Fire an event of ExitMethodEvent, recording the method namemName .
RI1 Inst Method recordInput(var) var is not of the type

HttpRequest.
Fire an event of InputEvent, recording the value or object identifier of
var .

RI2 Inst Method recordInput(var) var is of the type HttpRequest. Fire an event of InputEvent that records the object identifier of var , and
create a proxy object for the object referenced by var .

RO1 Inst Method recordOutput(var) var is a simple value. Fire an event of OutputEvent, recording the value of var .
RO2 Inst Method recordOutput(var) var references a complex object. Fire an event of OutputEvent that records the object identifier of var ,

and create a proxy object for the object referenced by var .
PM1 Proxy Method obj.m(arg1, ...) For each arдi , fire an event of OutputEvent, and create a proxy object for

arдi if it is of a complex type.
PM2 Proxy Method obj.m(arg) ob j is of the type HttpRequest,

andm has a return value.
Fire an event of InputAccessEvent to record arд and the returned value.

PF1 Proxy Framework obj.m(...) m returns a complex object. Create a proxy object to replace the returned object, and appendm to the
invocation sequence that leads to the current invocation.

PF2 Proxy Framework obj.m(...) m returns a simple value. Fire an event of OutputAccessEvent to record the returned value and the
previously recorded invocation sequence plusm.

of methods on a complex object to retrieve a simple value (e.g.,
visit.patient.patientId). If an intercepted method invocation
returns a complex object, we consider it as an intermediate step
towards the final output value, and we apply PF1 to create a new
proxy object to replace the return object to further trace subsequent
invocations and record the current invocation in the invocation
sequence. Otherwise, if the invocation returns a simple value, we
apply PF2 to fire an event of OutputAccessEvent, which records the
returned value, as well as the sequence of invocations recorded
along with all the intermediate invocations plus the final one.

Overall, this tracing step produces a trace for each request. Each
trace is in the form of (EnterMethodEvent (InputEvent | InputAc-
cessEvent | OutputEvent)* ExitMethodEvent OutputAccessEvent*)*,
indicating that zero or more request-handler methods are executed
for one request. During the execution of each method, there can be
zero or more InputEvent, InputAccessEvent, and OutputEvent. After
each method execution, there can be zero or more OutputAccessEv-
ent. For every access event (InputAccessEvent or OutputAccessEvent)
in a trace, the same trace must have one corresponding source event
(InputEvent or OutputEvent) before the access event, and the source
event records information about the accessed root object.

An example with Figure 2. We use renderDashboard() in Fig-
ure 2 as an example to show how the analysis and tracing stepswork.
The static-analysis step first identifies the parameter patientId as a
source variable and the parameter map as a sink variable. Thenwe in-
strument two lines of code patientId = recordInput(patientId)
and map = recordOutput(map) at the beginning of the method.
We also instrument events enterMethod and exitMethod at the
beginning and end of the method, respectively.

In the tracing step, the execution of renderDashboard() yields
a trace consisting of EnterMethodEvent, InputEvent on patientId,
OutputEvent on map, OutputEvent on the Patient object, Exit-
MethodEvent, OutputAccessEvent representing a method invoca-
tion of Patient.getPatientId. The InputEvent is triggered by RI1,
and the first OutputEvent by RO2. A proxy object for map is cre-
ated to replace the original object during this process. Then this

proxy object fires the second OutputEvent by PM1 when it inter-
cepts map.put(). It also creates and passes a proxy object for the
original Patient object into map. When the framework executes
patientDashboardForm.jsp, the proxy object for the Patient ob-
ject intercepts an invocation Patient.getPatientId(), and fires
OutputAccessEvent by PF2 as the method returns a simple value.

3.3 Specification Mining
Based on the trace structure defined in Section 3.2, each trace rep-
resents the processing of a single request. We first leverage the
user-session information collected along tracing to distinguish and
group traces of requests from different user sessions. We then use a
k-length sliding window algorithm to infer data-dependency spec-
ifications from traces from the same user session. Our algorithm
maintains a k-length sliding window because data dependencies
may exist across non-adjacent requests. For example, the two re-
quests mentioned in Section 2.2 are actually not adjacent, which is
separated by a background request triggered by the first patient-
overview page. In practice, data dependencies are unlikely to exist
between methods of a long request distance, and we expect the slid-
ing window size to be small. One can determine a proper window
size in different ways, depending on the environment where the
application under analysis is running. In an in-house testing setting,
one may repeat test runs and gradually increase the window size
until no true specification is found. In a production environment
where requests and workloads are not repeatable, one may use the
windows size determined during in-house testing or heuristically
adjust the size online, and we leave the latter for future work.

Algorithm 1 presents an outline of the k-length sliding window
algorithm. For each incoming trace t , the algorithm pairs t with
k − 1 previous traces from the same user session as well as t it-
self, and applies the subroutine MineSpec on these pairs. Mining
each of these trace pairs yields specifications that describe data de-
pendencies between request-handler methods in the paired traces.
Note that mining the reflective pair (t , t) yields specifications when
multiple request-handler methods are involved in processing the
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Algorithm 1:Mining Traces with a K-Length Sliding Win-
dow
Input: A trace t from a trace stream of the application
Global: A configurable integer k , a map M associating every session

identifier with a list storing up to k − 1 previous traces, and a
database DB storing existing data-dependency specifications

1 l ist ← M [GetSessionId(t)];
2 AppendLast(l ist , t);
3 foreach t ′ in l ist do
4 methodPairs, specs ← MineSpec(t ′, t);
5 foreach p inmethodPairs do
6 UpdateMethodPairStats(p , DB);
7 foreach s in specs do
8 UpdateSpecDB(s , DB);
9 if Size(l ist) = k then
10 RemoveFirst(l ist);

same request. From the subroutine MineSpec, the algorithm gets a
set of method pairs and a set of specifications. These pairs cover
request-handler methods between which the algorithm tries to
identify data dependencies. The algorithm stores these pairs (via
UpdateMethodPairStats()) for the statistical purpose of calcu-
lating and updating the confidence of each mine specification via
UpdateSpecDB(). For a specification s , we define its confidence as
the frequency of having the specification s identified between two
request-handler methods when these two methods appear together
in different trace pairs. We use confidence as an indicator of the
likelihood that a specification is true and worth further analysis.

Algorithm 2 shows the subroutine MineSpec, which does the
actual work to infer data dependencies across two methods. The
basic idea of this algorithm is to check whether some output values
from the trace of one request and some input values from the trace of
another request are equal. A pair of equal values indicates a possible
inter-request data dependency. The adoption of this equivalence
relation is backed by the observations that (1) unique values likely
exist to approximate the actual dependencies, and (2) these values
are usually carried from the output of one request to the input of
another without complex computations in between. For example,
the value of patient.patientIdwould be unique for every patient,
and the value is not involved in any complex computation.

In particular, Algorithm 2 takes two traces t1 and t2 to perform
the following three major steps. First, it extracts output and input
related events from t1 and t2. The extracted events include Out-
putEvent and OutputAccessEvent, indicating the output of request-
handler method(s) in t1, and InputEvent and InputAccessEvent, in-
dicating the input of method(s) in t2. Since OutputAccessEvent
and InputAccessEvent record method-invocation sequences, the
same invocation sequence in different events essentially reflects
either repetitive or iterative data-access actions, which may in-
dicate a many-to-one relation between the output and input of
the request-handler methods (i.e., the CHOICE case in specifi-
cations). Therefore, the algorithm clusters events that record an
identical invocation sequence (via ClusterOutputEvents() and
ClusterInputEvents()) to form an event set, which is used in
later steps as a whole to represent identical object-access actions.

Given the clustered input and output events, the second step
constructs a matching table to compute potential data dependencies
using concrete values recorded in these events. As shown below,
the rows of the table represent clustered output events in trace t1,

Algorithm 2:MineSpec on a Trace Pair
Input: Two traces t1 and t2
Output: A setmethodPairs storing pairs of request-handler methods, and

a set specs storing derived data-dependency specifications
1 methodPairs ← [];
2 specs ← [];
3 oEventList ← ClusterOutputEvents(t1);
4 iEventList ← ClusterInputEvents(t2);
5 matchTable ← ConstructMatchTable(oEventList , iEventList);
6 for i ← 0; i < Size(oEventList); i + + do
7 for j ← 0; j < Size(iEventList); j + + do
8 matchType ←matchTable[i][j];
9 if matchType is not no-match then
10 s ← CreateSpec(matchType , oEventList [i],

iEventList [j]);
11 Add(specs , s);
12 method1← GetMethodName(oEventList [i]);
13 method2← GetMethodName(iEventList [j]);
14 Add(methodPairs , (method1,method2));
15 returnmethodPairs, specs ;

and the columns represent clustered input events in trace t2.
t2EventInput1 t2EventInput2

t1EventOutput1 no-match one-to-one
t1EventOutput2 no-match no-match
t1EventOutput3 many-to-one no-match
... ... ...

For each cell of the table, the algorithm extracts concrete values
from the events, and checks for matched values, resulting in one of
three types of outcomes: (1) no value is matched, then the algorithm
marks the cell as no-match; (2) a single value is matched, and the
output and input events each contains only one concrete value,
then the algorithm marks the cell as one-to-one; (3) a single value is
matched, and the output event contains multiple concrete values,
then the algorithm marks the cell as many-to-one. We currently
do not consider the case of many-to-many, as it is not commonly
observed, but our approach can be extended to support such cases.

With a constructed matching table, the algorithm goes over each
cell in the table and creates a specification for the cell that indicates
a potential dependency (lines 6 - 14 in Algorithm 2). In particu-
lar, CreateSpec() (line 10) identifies (1) output and input entities
by tracking back from OutputAccessEvent or InputAccessEvent to
its corresponding OutputEvent or InputEvent, (2) the channel (=⇒)
that propagates an output object to the framework by determin-
ing whether OutputEvent is from a return statement or an out-
parameter, and (3) the transformation actions (−→) by extracting the
invocation sequence from OutputAccessEvent or InputAccessEvent.
With the matching type from each cell, the algorithm creates a spec-
ification describing how an output object of a method is propagated
and transformed into the input of another method.

4 EVALUATION
We have built a prototype of our approach for Java-based web
applications. We use Soot [11] for static analysis and instrumen-
tation, and Byte Buddy [56] for dynamic proxy creation. With the
prototype, we evaluated the following aspects of our approach.

Specification Accuracy. We measure how accurate the gener-
ated specifications are in describing data dependencies between
request-handler methods. We consider a specification to be true if
it reveals a real data dependency between the involved methods
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but not due to coincidentally equal values, and we manually exam-
ine and label each specification based on our understanding of the
subjects’ code and runtime behaviors.

Tracing Overhead.Wemeasure the runtime overhead imposed
by the tracing step. Measuring the tracing overhead helps us de-
termine the applicability of our approach in various scenarios. A
manageable overhead would allow us to run more tests to achieve
a better coverage. If the measured overhead is low enough and
suitable in a production environment, we can apply our approach
in the field to extract specifications based on real-world workload.

Characterization andApplication.Wemanually study all the
generated specifications to understand their characteristics and how
they can facilitate program understanding and future inter-request
analyses. We discuss the lessons learned and the experience of using
the specifications for tuning object cache policies.

4.1 Subjects
We evaluated our approach on two open-source Java-based web
applications: ITracker [20] (version 3.3.2), an issue-tracking system,
and OpenMRS [33] (version 1.11.5), a medical-record system.

ITracker has about 37,000 lines of Java code and about 8,000 lines
of view-template code. It uses Struts [5] as the supporting frame-
work. The request-handler methods defined under Struts follow
the convention that method inputs and outputs are passed through
special objects, such as HttpRequest objects. For the evaluation,
we randomly generated a data set containing 10 developers, 20
projects, and 200 bugs randomly distributed among the 20 projects.

OpenMRS has about 204,000 lines of Java code and about 25,000
lines of view-template code. It uses Spring [37] as the supporting
framework, and it contains request-handler methods defined in
three different forms: (1) methods using special objects to pass
inputs and outputs, (2) a workflow-based model requiring multiple
methods to process a single request (e.g., a method to create a
view and another method to create data objects), and (3) a modern
model passing method inputs and outputs directly through method
parameters by simple values and collection-based objects.We use an
anonymized data set with 5,000 patients and 500,000 observations.

These two applications use two widely adopted request-based
frameworks in a non-trivial way. The two frameworks have differ-
ent programming interfaces and paradigms, which lead to differ-
ences in the implementation of request-handler methods. We use
the two applications to show the generality and usefulness of our
approach on applications using different frameworks.

4.2 Experiment Design
To generate concrete application executions, we have implemented
a random workload generator using Selenium [46], a web-browser
based testing framework. The generator drives a web browser to
simulate user actions on web pages, such as clicking hyperlinks.
These actions can trigger requests to the applications. In particular,
the generator identifies actionable elements on each page, and then
performs an action on a randomly selected element. The identified
elements include hyperlinks, web forms, input elements, and so
on. For each element, the generator applies a corresponding action:
clicking for a hyperlink or a button, and generating random but
domain-specific data for a web form. With these capabilities, the

Table 2: Specification accuracy of ITracker and OpenMRS

Subject (Window Size) # of Specs # of True Specs Accuracy
ITracker (reflective) 0 0 N/A
ITracker (2) 64 54 84.38%
ITracker (3) 16 14 87.50%
ITracker (4) 2 0 0.00%
ITracker (5) 0 0 N/A
ITracker (Total) 82 68 82.92%
OpenMRS (reflective) 15 15 100.00%
OpenMRS (2) 20 17 85.00%
OpenMRS (3) 32 20 62.50%
OpenMRS (4) 11 1 9.09%
OpenMRS (5) 12 0 0.00%
OpenMRS (Total) 90 53 58.89%

generator can keep running to cover a wide range of request se-
quences on the subject applications. Given the random nature of
the generator, the workload it generates may not cover all possible
real-world request sequences. Therefore, our results need to be
interpreted with the random workload in mind.

We configure the generator with 10 distinct random seeds to
exercise different request sequences in the subjects. For each seed
configuration, we run the generator 10 times. Each run starts with
the same database state and consists of 500 simulated user actions.
Our results show that this setup allows our approach to discover
most of the possible and valid specifications. Although we aim at
producing repeatable results, the generator may encounter non-
deterministic and unexpected behaviors from Selenium and the
network. So we choose a relatively small number of actions for
each run to reduce the potential divergences on the request se-
quences, which are supposedly fixed by each random seed, and re-
peatedly run each configuration to get stable results. Nevertheless,
our reported results may still be affected the likely nondeterminism.

To evaluate specification accuracy, we use a sliding window with
an increasing size to process the generated traces. Starting from
size two, we keep increasing the window size until our manual
inspection determines that the increased window does not yield
new true specifications not seen in smaller windows. In the results,
we only consider specifications observed at least 100 times with a
confidence (defined in Section 3.3) of at least 0.2. These thresholds
are chosen to ensure that most true specifications would likely be
reported, while most false specifications would likely be filtered
out. We consider the reported results worth further inspection.

For tracing overhead, we record the processing time for each
request on the server side during experiment runs. Then we calcu-
late the overhead by comparing the recorded time of corresponding
requests on the instrumented and uninstrumented subjects. We
include requests from repeated runs to amortize the likely nonde-
terminism and performance anomaly.

4.3 Specification Accuracy
Table 2 presents the accuracy results for ITracker and OpenMRS
in different sliding-window sizes. Each row shows the statistics of
unique specifications that are not found in smaller windows. The
column “# of Specs” shows the total specifications in the window of
size shown by the first column, and “# of True Specs” shows the total
true positives that we manually identified. Note that a specification
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Figure 3: Tracing overhead by requests

may be found in windows of different sizes, so we attribute it to the
smallest window. For example, “ITracker (3)” shows statistics of the
specifications that can only be found in window size three or above,
and “OpenMRS (reflective)” indicates specifications found between
request-handler methods that process the same request. As a result,
we observe decreased numbers of specifications in larger windows.

The results show that our approach is effective and can reach a
balance between testing efforts and result accuracy with the report-
ing threshold.We find that increasing the window size does produce
more specifications. The additional specifications are either infre-
quent or not discovered under smaller windows. On the other hand,
a larger window introduces more false positives, which lower the
overall accuracy. As we can observe from the results, a break point
exists from which we may not have more true unique specifications.
For instance, the accuracy of ITracker is steady under windows of
sizes two and three, but no new true specifications are found in
larger windows. This observation suggests that most specifications
can be found in small windows, and we can determine the proper
window size by gradually increasing the mining window.

We also look into the false positives to investigate the causes. In
our mining step, any coincidentally equal output and input values
would lead to false positives. Confidence values can mitigate such
false positives to some extent. However, a specification with a
confidence of 100% does not necessarily mean a true positive, e.g.,
some of the false positives in OpenMRS have very high confidence
values. This is usually due to a combination of overlapped value
ranges and insufficient data points of different kinds of data objects.
For instance, multiple distinct data objects in OpenMRS, such as
hospital locations and question forms, have the same range of
identifier values, and sometimes appear in the same output. When
only a small number of such data objects exist in the database, the
chance of overlapped identifiers increases. Using more diverse data
sets (e.g., real-world data sets) can mitigate such problems.

4.4 Tracing Overhead
The tracing overhead on the total execution time from all experi-
ment runs is 74.96% or ITracker, and 33.43% for OpenMRS. Figure 3
presents the overhead results by requests. Each bar represents the
number of requests whose overhead falls into the range indicated
by the x-axis, e.g., 100% means the range from 75% (exclusive) to
100% (inclusive). Due to the space limit, we aggregate all the re-
quests whose overhead is above 200% into the last bar. Also note
that the total number of requests for each subject is not exactly

50,000, because some user actions may not trigger requests, and
some web pages may trigger background requests automatically.

Overall, the results show that the overhead of nearly 83% of all re-
quests falls within 100%. Given the current overhead measurements,
we conclude that our approach is suitable for in-house testing and
feasible to be selectively applied in a production environment with
less strict performance requirements.

We also observe some requests with high overhead that is related
to the large number of object accesses during request processing. In
ITracker, a frequent request path of high overhead is /list_issues
with a median overhead of 166.67%. To show a list of bugs, the view
template accesses every bug object multiple times to retrieve the
bug identifier, name, and other information, with an average of 695
method invocations per request on those objects. The situation is
similar in OpenMRS, e.g., /concept.htm with a median overhead
of 75.57% and 488 invocations per request on average.

4.5 Characterization
The mined specifications allow us to investigate common char-
acteristics of data dependencies across requests in the level of
request-handler methods. We next discuss our findings regarding
the propagation and use of inter-request data.

Among 121 true specifications, 86 of them show the propagation
of entity identifiers, such as the identifier of a patient in OpenMRS or
a project in ITracker. OpenMRS and ITracker store domain-specific
entities with identifiers in databases, and create data objects repre-
senting these entities when accesses are needed. To achieve certain
features, these applications may need the same entity in processing
multiple related requests. For instance, ITracker needs the same
piece of project information in processing requests /list_issues,
which lists all issues in the project, and /view_issue, which shows
a particular issue. To share information across requests, these ap-
plications choose to propagate entity identifiers instead of data
objects. On incoming requests, request-handler methods receive
these identifiers and then use them to recreate the corresponding
data objects from the database.

For the rest of the specifications, 15 of them represent data depen-
dencies between request-handler methods that process the same
request (e.g., getVisit() and showForm() in Figure 2). As such
methods are executed in the same context without going across the
client side, they directly propagate data objects to the supporting
framework, which further passes the objects to other methods.

The remaining 20 specifications involve values for pagination
and flags, and the propagated objects are not instances of application-
defined classes. Examples include an integer value indicating the
number of total data entries, which allows a method to calculate
how many remaining entries need to be displayed, and a string
instructing the next action of a receiving method.

4.6 Application: Tuning Cache Policies
As revealed by our characterization study, entity identifiers derived
from data objects are common in inter-request data propagation.
The request-handler methods tend to use the propagated identifiers
to recreate the corresponding data objects. Such behaviors lead
to repetitive object creation, which can be expensive, because it
usually involves database queries.
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The mined specifications can help pinpoint repetitive object cre-
ation between related request-handler methods. For the example in
Figure 2, a hypothetical analyzer could work in the following way:
(1) applying dataflow analysis starting from renderDashboard()
to identify the creation of the Patient object (line 7) and its out-
put site (line 8), (2) using the specification on renderDashboard()
and getVisit() as a summary to confirm that the parameter
patientId is an alias of patientId retrieved from the Patient
object, (3) continuing the analysis into getVisit() to identify the
creation of another Patient object using the same patientId (line
35). The analyzer could then infer that the two Patient objects
represent the same entity, and suggest an optimization strategy,
e.g., caching the first Patient object.

We follow the methodology of this hypothetical analyzer to man-
ually optimize repetitive object creation in our evaluation subjects
by leveraging the object cache built in Hibernate [39]. Hibernate
is used by both subjects as their data-access layer, and its cache is
controlled by configuration files specifying classes of objects to be
cached and their caching lifetimes.

We first rank the mined specifications by their observed times
to identify data objects whose identifiers are frequently propa-
gated across requests. The top identified objects are: Issue and
Project for ITracker, and Concept, Obs (Observation), Patient,
and Visit for OpenMRS. In ITracker, Issue and Project objects
are not cached, and we directly create a new long-term cache pol-
icy for them. In OpenMRS, there is a default cache policy apply-
ing a long-term cache policy with a 12,000-second lifetime for
Concept objects and a short-term policy with a 30-second life-
time for Patient objects. However, the cache of Concept objects
is insufficient, as the objects referenced by Concept objects (e.g.,
ConceptName and ConceptDescription) are not included in the
default policy. In addition, the lifetime for Patient objects is too
short for multiple requests of related patient features. Therefore, we
amend the default cache policy to include Obs and Visit objects,
objects referenced by Concept objects, and change the policy for
Patient objects to be long-term.

We run the same experiment described in Section 4.2 with and
without the updated cache policies, and we measure both database
queries and execution time. A reduction in database queries indi-
cates that fewer data objects are created by querying data from a
database, as the required objects are cached in the application. The
results show an average query reduction of 8.50% for ITracker and
5.05% for OpenMRS under our random workload, and the reduc-
tion in the total execution time is 3.32% for ITracker and 2.80% for
OpenMRS. The presented execution time is measured in an experi-
mental setup where the database server and application server are
deployed on the same machine. We expect a greater time reduction
in a realistic setting where the network latency in accessing the
database introduces more overhead in the overall execution time.
On the other hand, the query count will remain stable, as it is less
sensitive to possible instabilities in the execution environment.

5 RELATEDWORK
Analysis of web applications. There is a wide range of work on

web applications, such as testing [2, 7, 24, 26, 27, 44, 54, 59], program
slicing [32, 51, 53], and security analysis [1, 19, 31, 47, 52, 55]. The

proposed approaches perform their analysis based on some forms
of data- or control-flows.

Some of the approaches [1, 6, 7, 26, 32, 51] extract page naviga-
tion and/or data-flows across web pages. These approaches com-
monly rely on a language-specific model to analyze program code
(e.g., PHP) that directly generates dynamic page content. With a
modernized point of view on framework-based web applications,
our approach focuses on request-handler methods and their data
dependencies, eliminating the involvement of web pages. We make
this choice because framework-based web applications are popular
nowadays and they expose request-handler methods as application
entry points instead of web pages.

Some other approaches, such as TAJ [53], F4F [47], and AN-
DROMEDA [52], perform analysis on framework-based web ap-
plications. These approaches require framework-specific model-
ing, and treat each request-handler method as a single entry point
of analysis. On the contrary, our approach is not tied to specific
framework implementations, and can enhance these approaches by
providing inter-request data dependencies for end-to-end analysis.

Program specification mining and its applications. Existing work
has shown program specifications inferred from traces to be useful
in program analysis, such as data-flow specifications [15, 17] for
complex libraries and dynamic language features, and specifica-
tions in finite state machines [9, 10, 18, 22, 23, 29] for component
interactions, API usages, and temporal invariants.

With the purpose of inter-request analysis, our inferred specifica-
tions describe data dependencies between request-handler methods
that are modularized by underlying frameworks. Our evaluation
has shown a use case of tuning cache policies to reduce database
operations. Future work can use our specifications to automate such
optimization and perform more fine-grained analysis in combina-
tion of many existing approaches [30, 38, 48]. For instance, Tamayo
et al. [48] propose an approach to construct dependency graphs for
database operations. Ramachandra et al. [38] propose an approach
to identify database operations in the interprocedural scope to en-
able prefetching. Our specifications can enable these approaches to
perform inter-request analysis for more optimization opportunities.
As another example, we also envision that our specifications can
allow information-flow analysis to detect security vulnerabilities
and malicious flows across multiple requests.

Dynamic taint tracking. Our tracing approach is similar to dy-
namic taint tracking, which incurs a non-negligible runtime over-
head. Dytan, a generic taint tracking system [16], reports an over-
head from 3000% to 5000%. Phosphor, a recent system for Java [8], in-
curs an average overhead of 53.31% and 220% at worst. We consider
the overhead of our approach to be on a par with these systems.

6 CONCLUSION
We present dataflow tunneling, which derives data-dependency
specifications between request-handler methods for request-based
applications. The outcome specifications can enable inter-request
analysis, which allows program analysis to work in the scope across
request-handler methods. As future work, we plan to develop inter-
request analysis techniques that can leverage the outcome specifi-
cations to improve the quality of request-based applications.
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