
This is Why We Can’t Cache Nice Things: Lightning-Fast Threat
Hunting using Suspicion-Based Hierarchical Storage

Wajih Ul Hassan⋄, Ding Li‡, Kangkook Jee◦, Xiao Yu∗, Kexuan Zou⋄, Dawei Wang⋄, Zhengzhang
Chen∗, Zhichun Li∗, Junghwan “John” Rhee†, Jiaping Gui∗, Adam Bates⋄

⋄University of Illinois at Urbana-Champaign ‡Peking University ◦University of Texas at Dallas
†University of Central Oklahoma ∗NEC Laboratories America, Inc.

ABSTRACT

Recent advances in the causal analysis can accelerate incident re-
sponse time, but only after a causal graph of the attack has been
constructed. Unfortunately, existing causal graph generation tech-
niques are mainly offline and may take hours or days to respond to
investigator queries, creating greater opportunity for attackers to
hide their attack footprint, gain persistency, and propagate to other
machines. To address that limitation, we present Swift, a threat
investigation system that provides high-throughput causality track-
ing and real-time causal graph generation capabilities. We design
an in-memory graph database that enables space-efficient graph
storage and online causality tracking with minimal disk operations.
We propose a hierarchical storage system that keeps forensically-
relevant part of the causal graph in main memory while evicting
rest to disk. To identify the causal graph that is likely to be relevant
during the investigation, we design an asynchronous cache evic-
tion policy that calculates the most suspicious part of the causal
graph and caches only that part in the main memory. We evaluated
Swift on a real-world enterprise to demonstrate how our system
scales to process typical event loads and how it responds to foren-
sic queries when security alerts occur. Results show that Swift is
scalable, modular, and answers forensic queries in real-time even
when analyzing audit logs containing tens of millions of events.
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1 INTRODUCTION

Modern organizational networks are sprawling and diverse, hosting
data of tremendous value to malicious actors. Unfortunately, due
to the complexity of organizations and time-consuming nature
of threat investigations, attackers are able to dwell on the target
system for longer periods. In slow-moving targeted attacks (e.g.,
Equifax [29]), the amount of damage wrought by the attacker grows
exponentially as their dwell time in the system increases [18], with
a recent study reporting that it costs organizations $32,000 for
each day an attacker persists in the network [36]. This situation
is made even worse when considering fast-spreading attacks; the
infamous Slammer worm [65] that infected more than 75,000 hosts
within the first ten minutes of its release, and recent ransomware
attacks [9, 19, 24] exhibit a similar replication factor. Regardless
of the specific attack, delayed response times imply significantly
larger negative consequences. Thus, to minimize repercussions
of intrusions, cyber analysts require tools that facilitate fast and
interactive threat hunting.

Given its vital importance, what are the key factors that de-
termine the success of the threat hunting process? The various
steps involved in post-breach threat hunting [14] are summarized
in Figure 1. Effectiveness is usually measured using two metrics
in industry [5]: 1) Mean-time-to-detect (MTTD), which measures
the time required for the organization’s Threat Detection Software
(TDS) to detect suspicious activity and raise a security alert; and
2) Mean-time-to-know (MTTK), which measures the time required
for cyber analysts to make sense of alert and unearth evidence that
the alert is indicative of a true attack. Depending upon the volume
of threat alerts and the analysis tools available to the analyst, this
process can typically range from hours to days for an individual
threat alert [15, 18].

Recently, threat hunting has become a subject of renewed in-
terest in the literature, primarily due to advancements in causal

analysis [30, 31, 38, 39, 43–45, 47–49, 53, 54, 58, 60, 61] that can
can reduce MTTK during the post-breach threat hunting process.
Causality analysis incrementally parses audit log events generated
by system-level logging tools (e.g., Linux Audit [4]) into causal
graphs (i.e., provenance graphs) that encode the dependency rela-
tionships between subjects (e.g., processes) and objects (e.g., files)
in the system. Such graphs not only provide the historical con-
text needed by analysts to quickly understand alerts, but have also
been shown to be useful for alert management (e.g., triage [41],
correlation [40, 63], cyber threat intelligence [62, 69]).
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Figure 1: Typical post-breach threat hunting in an enterprise. Both

alert management (e.g., triage) and investigation steps require

causal graphs of generated alerts.

Unfortunately, at present the performance of causal analysis is a
limiting factor to their widespread adoption – early attempts to de-
ploy these techniques in practice reported graph construction times
ranging from hours to days and unwieldy audit logs that reached
terabytes in size over just a week (e.g., [57]). These existing tools fall
under two categories: 1) disk-based offline approaches (e.g., [41, 57])
that incur significant I/O bottleneck and takes hours to respond to
each query, thereby increasing MTTK; and 2) memory-based online
approaches (e.g., [31, 44]) that require the whole causal graph to be
stored in main-memory for analysis, which cannot scale to even
modestly-sized organizations. As neither approach is a practical
candidate for deployment, prior work has sought to improve the
performance of causal analysis through various forms of graph
reduction and compression (e.g., [32, 40, 42, 46, 55, 71, 73, 74]). By
reducing the number of log events to process, those techniques
have indeed improved query latency and alleviated the burdens of
long-term storage. However, these approaches potentially affect the
fidelity of logs for answering key forensic queries.1 Further, over
longer periods those techniques do not provide a scalable solution
to log analysis and management.

In this work, we propose a causal analysis and alert management
framework that can process logs and forensic queries as quickly as
the system event stream. Unfortunately, building a highly scalable
real-time causality tracker is a daunting task. The challenge comes
from the volume and velocity of system events that are in large
enterprises. Three key challenges need to be answered before we
can build this scalable mechanism:

C1 Scalable Ingest: How can we continuously ingest and process
upwards of terabytes of system events per day?

C2 Fast Graph Retrieval: How can we quickly recover causal
graphs of recent alerts, especially when alerts’ dependencies
may extend back weeks into the past?

C3 Efficient Alert Management: How can we incorporate causal-
ity analysis into real-time alert management to help cyber
analysts cope with the deluge of alerts?

1.1 Approach Overview & Contributions

To address these challenges, we designed Swift2, a causality tracker
for which scalability and performance are first-class citizens. Fig-
ure 2 presents an overview of the Swift architecture. Enterprise-
wide audit logs are first collected into a Kafka broker [11] and then
fetched by the consumer threads of Swift. Each consumer thread
1For example, LogGC removes subgraphs associated with closed sockets and thus
could obscure data exfiltration attempts [55], while Winnower may prevent attack
attribution by abstracting remote IP addresses [42].
2Swift is a recursive acronym for Swift investigator for threat alerts.
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Figure 2: Overview of Swift architecture.

buffers the events for a certain configurable window, organizes the
out-of-order events based on their timestamps, and merges con-
tinuous events that have the same source and destination.3 Then,
these audit log events are fed into a novel hierarchical storage
management (HSM) system.

The challenge of scalable ingestion (C1) is met by the first contri-
bution of this paper, a novel vertex-centric graph schema and data-
base that is tailored for online causality analysis. This in-memory
causal graph database allows Swift to quickly identify the causal
relationships of streaming events with all causally-related events
that occurred previously. We show that our graph database is space-
efficient and is an enabling factor in providing real-time query
results without significant disk I/O during our experiments.

The challenge of fast graph retrieval (C2) is resolved through
the introduction of a causal graph HSM that consists of a two-
layered memory cache (the tracking cache and suspicious cache,
respectively), and a disk. This HSM automatically moves causal
graph segments between main-memory and disk to achieve high-
throughput data ingestion and low-latency query results. However,
incorporating an HSM into an existing causal analysis framework
is non-trivial – a generic cache eviction strategy would regularly
evict forensically-relevant events, leading to increased disk access
and high query latency.

Our solution to eviction is based on two distinct insights that
motivate our two-layered memory cache design. The first insight
is that of temporal locality; recent events have a high probability
of dependence with upcoming events in the near future, Based on
this observation we formulated an Epochal Causality Hypothesis,
described in Section 6.1, and store recent events in the tracking
cache. As events age out of the tracking cache, a decision must be
made as to which events are likely to be used in forensic queries
and should thus be retained in memory.

To identify forensically-relevant events, we formulated a Most

Suspicious Causal Paths Hypothesis which states that, given a suspi-
cious influence score algorithm (e.g., [33, 41, 50, 51, 57]) that satisfies
three key properties described in Section 6.2, we can calculate the
most suspicious causal paths in an online fashion (on time-evolving
graphs); as these paths are more likely to be associated with a true
attack, they are also the most likely to be queried and should thus be
retained in the suspicious cache. Note that a causal graph consists
of one or more causal paths (further described in Section 4). Finally,
to quickly identify top-k most suspicious causal paths seen so far

3Most of the operating systems introduce several system-level events for single file
operation. Aggregating these events together does not affect the correctness of causality
analysis but saves substantial space.
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in the enterprise, Swift also maintains a Global List that stores
pointers to such paths.

The final contribution of this paper considers the matter of ef-
ficient alert management (C3), which is a vital consideration to
mitigating threat alert fatigue [18]. Swift includes an alert manage-
ment layer on top of its HSM. When alerts are fired by a connected
TDS (e.g., Splunk [70]), Swift automatically leverages its suspi-
cious influence scores to perform alert triage based on historical
context,4 allowing the analyst to investigate the most likely threats
first. Further, during online causality tracking, Swift keeps track
of all previously-fired alerts. When an alert has a causal relation
with a previously fired alert, Swift fuses these events into a single
causal graph to display to the analyst.

1.2 Summary of Results

We deployed and evaluated our system at NEC Labs America, com-
prised of 191 hosts. Our case studies on this testbed confirm that
Swift can retrieve the most critical parts of an APT attack from a
database of over 300 million events in just 20 ms. Swift successfully
classified 140 security alerts and responded to forensic queries in
less than 2 minutes, reducing the latency of the state-of-the-art alert
triage tools by 5 hours. With this result, we estimate that Swift
can scale to monitor upwards of 4,000 hosts on a single server.
Further, Swift can scale to support thousands of monitored hosts
on a single machine using just 300 MB memory, thus addressing a
central limitation of existing causal analysis techniques. We clarify

at the outset that Swift does not improve or detract from the efficacy

of its two modular components, the underlying TDS (e.g., [70]) and

suspicious influence scoring algorithm (e.g., [41, 57]); instead, Swift

seeks to improve security by dramatically improving the speed and

scalability of causality-based threat hunting solutions.

2 RELATEDWORK

Performance of Causal Analysis. Several threat investigation
systems, such as PrioTracker [57], SAQL [37], and NoDoze [41]
have been proposed to improve the performance of causal analysis
in enterprises. Those systems use disk-based approach and may
take hours to respond to each query. In a large enterprise with
high-speed alerts, such response times are ineffective, increasing
MTTK and attacker’s dwell time.

CamQuery system [68] supports scalable online analysis of causal
graphs. However, CamQuery only supports iterative computation
of queries as pre-written programs. It does not support full forensic
querying which cannot be known ahead of time and thus cannot
be used for active threat hunting. Sleuth [44], Holmes [63], and
Poirot [62] use in-memory graph database to provide real-time
forensic analysis; however, they require whole causality data to be
stored in main memory for forensic analysis. Thus, those systems
cannot scale to enterprises that usually produce terabytes of data
per week [57].

KCAL [59] proposed a kernel-level cache to remove redundant
causal events and reduce the overhead of log transfer from kernel
to user-space. However, the log is eventually stored on disk which
incurs slow response times during forensic analysis. Moreover,
4Prior work [41] has shown that incorporating historical context into alert triage may
reduce the false positives of a commercial TDS by up to 84%.

KCAL does not provide any scalable solution for causal analysis on
enterprise-wide data.
Graph Databases. Given the high-throughput and low-latency
requirements of large-scale streaming systems, key-value storage
systems are shifting to in-memory designs [25, 56, 66]. Existing
graph databases (e.g., Redis [26], Neo4J [21], and Stinger [35]) can-
not be used directly in forensic analysis domain because of two
main reasons. First, these databases need to load and keep the whole
causal graph in themainmemory to enable forensic analysis queries
(e.g., backward tracing). In large enterprises where terabytes of data
needs to be loaded from disk for long-running attack campaigns,
this approach incurs a significant I/O bandwidth. Even assigning
large main memory is prohibitively impractical for large enterprises
because they need to store six months of log data, which is the av-
erage attacker dwell time, in the main-memory to provide real-time
causal analysis. For example, NEC Labs America, with 191 hosts,
generated about 20 TB of audit log in six months. So 20 TB of audit
log needs to be stored in the main memory to provide real-time
causal analysis at that enterprise.

Second, all-purpose graph databases incur a lot of space overhead
to maintain every edge/vertex because they need to support most of
the graph algorithms (e.g., clustering coefficient) not just forensic
analysis algorithms. On the other hand, Swift provides causal
graph database which is optimized for forensic analysis and keeps
only forensically-relevant graph in the main memory to enable fast
alert’s causal graph generation.
Alert Correlation. Alert correlation techniques assist security
analysts by correlating similar threat alerts. Existing systems use
statistical-, heuristic-, and probabilistic-based methods [34, 67, 72]
to derive correlations between generated threat alerts. Moreover, se-
curity information and event management (SIEM) [16, 28] systems
use similar approaches for alert correlation. We argue that these
techniques are based on mere event correlations, while through
causal analysis we can establish actual system-layer dependencies
between events as provided by Swift.

3 THREAT MODEL AND ASSUMPTIONS

This work considers a large enterprise environment, comprised
of upwards of thousands of machines, that is the target of a so-
phisticated and well-funded remote attacker. The attacker follows
the pattern of rapid cyber attacks which are both fast – taking
minutes to spread through the whole enterprise and disruptive –
creating significant business disruption by establishing persistence,
privilege escalation and lateral movement.

We make the following assumptions about the environment.
We assume that there is a kernel-level causality tracker running
on each host in the enterprise (e.g., Linux Audit, LPM [31]). We
also assume the presence of one or many threat detection systems
that generate threat alerts in real-time (e.g., [1, 2, 6, 16, 70]); recall
that our solution will use causal analysis to triage, correlate, and
provide historical context to these alerts. Like other work in this
space (e.g., [40, 42, 43, 45, 53]), we assume that the causality tracker
is not compromised and that the audit logs are correct at the time
of forensic analysis. Hardware-layer or physical attacks, as well as
side-channels, are designated as out of the scope of this paper.
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Figure 3: An example causal graph. The event (edge)𝐸4 has triggered

an alert. The full graph describes the causality of the alert.

4 PRELIMINARIES

4.1 Causality Analysis

Audit logs are a set of records that provide a detailed history of the
activities that have affected an operating system. Audit support is
included in all major operating system families, such as the Linux
Audit [4] and Event Tracing for Windows (ETW) [3]. Causality
trackers incrementally parse events in these audit logs into causal
graphs of the form 𝐺 =< 𝑉 , 𝐸 >. 𝑉 is a set of vertices representing
different system entities (e.g., processes, file) that are identified by
various metadata such PID and file path. 𝐸 is a set of edges defined
by the 4-tuple (𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑡, 𝑟𝑒𝑙 ) where 𝑟𝑒𝑙 is a causal relationship type
between vertex 𝑠𝑟𝑐 and vertex 𝑑𝑠𝑡 that occurred at time 𝑡 . Because
each threat alert in the system is an event associated with an edge
𝑒 ∈ 𝐸, a cyber analyst can issue a backward tracing query on the
causal graph to identify the root cause of 𝑒 , then issue a forward
tracing query to identify other ramifications of the same attack.

Figure 3 shows the simplified causal graph generated for a threat
alert triggered by event 𝐸4, which documents a process mal.exe

initiating a network connection to IP Y.Y.Y.Y. The full graph shows
the backward trace, or provenance, of 𝐸4, revealing that mal.exe
was downloaded from IP X.X.X.X. This contextual information can
help cyber analysts to validate and investigate the generated alert.
A causal graph consists of one or more causal paths, which are
defined as follows:

Def. 1. Causal Path. A causal path 𝑃 of a event 𝑒𝑎 represents a

chain of events that led to 𝑒𝑎 and chain of events induced by 𝑒𝑎 in

the future. It is a temporally ordered sequence of events and repre-

sented as 𝑃 := {𝑒1, . . . , 𝑒𝑎 , . . . , 𝑒𝑛 } of length 𝑛. Each event can have

multiple causal paths where each path represents one possible flow of

information through 𝑒𝑎 .

4.2 Suspicious Influence Score

When analyzing causal paths, it is desirable to understand how the
suspiciousness of each event relates to the whole. Here, our suspi-
cionmay relate purely to an event’s rarity, but may also incorporate
other knowledge sources besides frequency, such as IP blacklists
or antivirus signatures. To evaluate the suspiciousness of an entire
path, we introduce the notion of a suspicious influence score. We
say that a path exerts “suspicious influence” because it influences
the level of suspicion that we have for future events, including alert
events.

Def. 2. Suspicious Influence Score. For a causal path 𝑃 :=
{𝑒1,. . . ,𝑒𝑖 ,. . . ,𝑒𝑛 } where the suspiciousness score for event 𝑒𝑖 is given
by 𝐴𝑆 (𝑒𝑖 ), the suspicious influence score 𝐴𝑆 (𝑃) is a function that

combines the suspiciousness score of each event in the path 𝑃 .
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Figure 4: Example of causal graph database updates over time.

Many prior works satisfy this definition for a suspicious influence
scoring algorithm, e.g., [33, 41, 50, 51, 57]. In our approach, we
require the scoring algorithm to satisfy three specific properties:
Cumulativity, Temporality, and Monotonicity. Combined, these
properties will allow Swift to track causality in an online fashion
with a low time complexity and minimal disk operations. To better
explain these properties, we use Figure 4 as an example.

The first property, Cumulativity, means that the suspicious
influence score of a path can be calculated from the suspicious
influence score of its prefix and the suspiciousness score of its last
event. For example, in Figure 4, to calculate the suspicious influence
score of the causal path 𝑃1 = {𝐵 → 𝐴 → 𝐷}, we only need to
know the suspicious influence score of 𝑃 ′1 = {𝐵 → 𝐴} and the
suspiciousness score of event 𝐴 → 𝐷 . This property guarantees
that while adding new events to an existing path, Swift does not
need to backtrack the existing path to generate the suspicious
influence score for the newly extended path.

The second property, Temporality, means that an event can
only affect the suspicious influence score of events that happen
after it. For two events 𝑒1 = {𝑉1 → 𝑉2} and 𝑒2 = {𝑉2 → 𝑉3}, event
𝐴𝑆 (𝑒2) depends on 𝐴𝑆 (𝑒1) only if 𝑒1 happens before 𝑒2. This is
intuitive from an information flow perspective, as 𝑉2 will not have
been inform by 𝑉1 until after 𝑒1 occurs. For example, at time 𝑇2 in
Figure 4, events𝐴→ 𝐸 and𝐴→ 𝐷 do not depend on event 𝐹 → 𝐴

because this occurred at time𝑇3. Therefore, we do not calculate the
suspicious influence scores 𝐴𝑆 (𝐹 → 𝐴→ 𝐸) or 𝐴𝑆 (𝐹 → 𝐴→ 𝐷).

The third propertyMonotonicity, means that when a new event
is appended to two existing paths it does not change the suspicious
influence score of the existing paths. Let 𝑃1 = {𝑃 ′1 → 𝑆 → 𝐷} and
𝑃2 = {𝑃 ′2 → 𝑆 → 𝐷}, where 𝑃 ′1 and 𝑃 ′2 are distinct causal paths
prefixes and {𝑆 → 𝐷} is a new event shared by 𝑃1 and 𝑃2. The
monotonicity property states that if 𝐴𝑆 (𝑃 ′1 → 𝑆) > 𝐴𝑆 (𝑃 ′2 → 𝑆)
then it must also be true that 𝐴𝑆 (𝑃1) > 𝐴𝑆 (𝑃2). For example in
Figure 4, if 𝐴𝑆 (𝐵 → 𝐴) > 𝐴𝑆 (𝐶 → 𝐴) at time 𝑇1 then it must
also be true that 𝐴𝑆 (𝐵 → 𝐴 → 𝐸) > 𝐴𝑆 (𝐶 → 𝐴 → 𝐸) at time 𝑇2.
This property helps ensure the correctness of our online causality
tracking.

5 VERTEX-CENTRIC CAUSAL GRAPH

In this section, we first explain different graph formats and de-
scribe their merits and limitations for fast causal analysis. Then,
we present the graph format used by Swift.

5.1 Graph Representation

There are twomajor data formats for graphs [52]. First, the Edge List
format is a collection of edges, each a pair of vertices, that captures
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the incoming data in their arrival order. Second, the Adjacency

List format manages the neighbors of each vertex in separate per-
vertex edge arrays. In Edge Lists, the neighbors for each vertex are
scattered across the data structure, making it difficult to traverse
the graph quickly. On the other hand, in Adjacency Lists vertex
neighbors are easy to reference, making them better suited for
causal graph traversal.

In our causal graph schema, each system subject and object is
represented as a vertex in the causal graph and stored as an entry
in a key-value storage. In each key-value pair ⟨𝐾𝑒𝑦,𝑉𝑎𝑙⟩, 𝐾𝑒𝑦 is
the unique identifier representing the vertex and 𝑉𝑎𝑙 is a list of
three entries. For a vertex 𝐾 this list is as follows:

(1) A list of 𝐾 ’s parent vertices’ unique identifiers, 𝐿𝑝𝑎𝑟𝑒𝑛𝑡𝑠 .
Each parent identifier is associated with a timestamp for the
event’s creation and the edge relationship type.

(2) A list of 𝐾 ’s child vertices’ unique identifiers 𝐿𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 . Each
child identifier is associated with a timestamp for the event’s
creation and the edge relationship type.

(3) An ordered list 𝑃𝐴𝑇𝐻
abnormal

of the𝑚most suspicious causal
paths that end with vertex 𝐾 , sorted in order of each path’s
suspicious influence score.

This graph representation is specifically tailored towards forensic
analysis queries, i.e., backward and forward tracing queries. We use
the same graph representation for both main-memory and on-disk
storage. Recall that a major goal of Swift is to provide hierarchical
storage that can quickly query the most suspicious causal graphs.
Our graph schema supports this through the 𝑃𝐴𝑇𝐻

abnormal
objects,

which are sorted in a descending order of their suspicious influence
scores. Note that each vertex has a set of causal paths that end at it,
even though these may be sub-paths of other paths. For example, in
Figure 4, vertex𝐴 has two paths in its 𝑃𝐴𝑇𝐻

abnormal
, 𝑃1 = {𝐵 → 𝐴}

and 𝑃2 = {𝐶 → 𝐴}. These two paths are the sub-paths of 𝑃3 =

{𝐵 → 𝐴→ 𝐷} and 𝑃4 = {𝐶 → 𝐴→ 𝐷}, respectively.

5.2 Suspicious Causal Paths

For a vertex 𝐾 , each path in 𝑃𝐴𝑇𝐻
abnormal

is a tuple in the form
of (𝑃, 𝑆, 𝑡, 𝑅𝑒𝑙, 𝑅𝑎𝑛𝑘): 𝑃 is the unique identifier of the parent vertex
of 𝐾 in a given causal path; 𝑆 is the suspicious influence score of
the path; 𝑡 is the timestamp of the edge event 𝑃 → 𝐾 ; 𝑅𝑒𝑙 is edge
relationship between𝐾 and 𝑃 ; and𝑅𝑎𝑛𝑘 is the relative score ranking
of all the paths that end at 𝑃 → 𝐾 . In the case when multiple edges
with the same edge relationship 𝑅𝑒𝑙 exists between two vertices,
we keep only the latest timestamp. This is because ignoring the
previous edges does not affect the correctness of forensic analysis,
as shown by previous works (e.g., [44, 55]).

We use Figure 4 as an example to explain our design of 𝑃𝐴𝑇𝐻
abnormal

.
Note that we do not show edge relationships in this figure and rest
of the paper for simplicity although we do store edge relationships
in our schema. In Figure 4 there are three paths ending at the ver-
tex 𝐷 , which are 𝑃1 = {𝐵 → 𝐴 → 𝐷}, 𝑃2 = {𝐶 → 𝐴 → 𝐷},
and 𝑃3 = {𝐵′ → 𝐴′ → 𝐷}. Assume the suspicious influence
score and the timestamps of 𝑃1, 𝑃2, and 𝑃3 are 𝑆1, 𝑆2, and 𝑆3 and
𝑡1, 𝑡2, 𝑡3, respectively. If 𝑆1 > 𝑆2 > 𝑆3, then 𝑃𝐴𝑇𝐻abnormal

of 𝐷
is [(𝐴, 𝑆1, 𝑡1, 𝑅𝑒𝑙10), (𝐴, 𝑆2, 𝑡2, 𝑅𝑒𝑙2, 1), (𝐴′, 𝑆3, 𝑡3, 𝑅𝑒𝑙3, 0)]. For the
tuple (𝐴, 𝑆1, 𝑡1, 𝑅𝑒𝑙1, 0), it means that the parent of the given causal
path is 𝐴, its suspicious influence score is 𝑆1, the event 𝐴 → 𝐷

Algorithm 1: PathDiscover
Inputs :𝑉 , 𝑅, 𝑆𝑒𝑒𝑛
Output :𝑃𝐴𝑇𝐻

1 𝑃𝑎𝑟𝑒𝑛𝑡 = GetParent(𝑉 ,𝑅)
2 if 𝑃𝑎𝑟𝑒𝑛𝑡 = 𝑁𝑢𝑙𝑙 then

3 return 𝑁𝑢𝑙𝑙

4 if 𝑃𝑎𝑟𝑒𝑛𝑡 ∈ 𝑆𝑒𝑒𝑛 then

5 return 𝑁𝑢𝑙𝑙

6 𝑆𝑒𝑒𝑛 ← 𝑃𝑎𝑟𝑒𝑛𝑡

7 𝑃𝑎𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 = GetRank(𝑉 ,𝑅)
8 𝑃𝐴𝑇𝐻 = PathDiscover(𝑃𝑎𝑟𝑒𝑛𝑡 ,𝑃𝑎𝑟𝑒𝑛𝑡𝑅𝑎𝑛𝑘 , 𝑆𝑒𝑒𝑛)
9 Append(𝑃𝐴𝑇𝐻 ,𝑃𝑎𝑟𝑒𝑛𝑡 )

10 return 𝑃𝐴𝑇𝐻

happens at time 𝑡1 with edge relationship 𝑅𝑒𝑙1 and its suspicious
score ranks the first among all paths which have the last edge as
𝐴→ 𝐷 .
Limiting the Size of 𝑃𝐴𝑇𝐻

abnormal
The number of paths that end

at each vertex is exponential to the number of vertices. Maintaining
a 𝑃𝐴𝑇𝐻

abnormal
that contains all paths is not realistic. To address

this limitation, in our design of Swift, the length of 𝑃𝐴𝑇𝐻
abnormal

is limited to𝑚. Limiting the size of 𝑃𝐴𝑇𝐻
abnormal

means that for
each vertex in the causal graph, Swift only keeps the top𝑚 most
suspicious paths that end at that vertex in memory. Note that this
does not affect the completeness of the whole causal graph since
the complete parent and child list for each vertex is maintained on
disk. It only affects the paths that can be retrieved quickly from the
main memory. Based on the Hypothesis H2, these suspicious paths
are more likely to represent attacks. Thus, it is reasonable for us to
limit the size of 𝑃𝐴𝑇𝐻

abnormal
for each vertex.

5.3 Graph Query

Our design of the causal graph schema and database allows fast
recovery of a causal path with the unique identifier of its last vertex
and its index in 𝑃𝐴𝑇𝐻

abnormal
. The time complexity of the recover-

ing process is 𝑂 (𝑛), where 𝑛 is the length of the causal path. The
algorithm is outlined in Algorithm 1. The inputs are the vertex 𝑉 ,
the relative ranking 𝑅 of the causal path in 𝑉 , and 𝑆𝑒𝑒𝑛, which is a
hashmap of the previously-visited vertices during path discovery.
This hashmap is used to halt recursion in the case of a cycle. The
output of Algorithm 1 is the discovered path.

We use Figure 4 as an example to explain the recovering process.
Assume that Swift wants to recover the highest scoring path 𝑃1 =

{𝐵 → 𝐴→ 𝐷}. To do so, Swift only needs to have the last vertex
𝐷 and the relative ranking (index), which is 0. To recover the full
path, Swift refers to the first element in its 𝑃𝐴𝑇𝐻

abnormal
and

recovers the parent in the given path, which is 𝐴, and gets the
relative ranking of the path in 𝐴, which is also 0. Then this process
is recursively repeated on 𝐴 and its ranking until the whole path is
recovered.

6 HIERARCHICAL STORAGE MANAGEMENT

6.1 Tracking Cache

Swift takes the stream of audit log events and identifies causal
relationships between each new event and past events in order to
build a causal graph. The role of the tracking cache is to ensure
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Figure 5: CDF of the time difference between a newly generated

event and the event’s immediate dependencies (i.e., parents). 98% of

events’ immediate dependencies occurred less than 15minutes ago,

providing empirical evidence for the Epochal CausalityHypothesis.

that the events most relevant to the graph building process are con-
sistently available in the main memory. Our approach to assuring
fast access to causally-related past events is based on the following
hypothesis:
H1 Epochal Causality Hypothesis. Events which are recently

accessed during causal graph generation are accessed again

in a short epoch of time (Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 ), and thus should not be
evicted from the main memory in that epoch.

An empirical validation of hypothesis H1 is given in Figure 5
based on the audit stream of a 191 host enterprise. This CDF shows
that the immediate dependencies (i.e., parents) of 98% of newly
created events were created within a short epoch prior (< 15mins).
In other words, if we can design a cache that can store the most
recent 15 minutes of events in the main memory, we will eliminate
98% of disk accesses.

6.1.1 Tracking Algorithm & Eviction Policy. Algorithm 2 outlines
the high level steps of our online tracking algorithm. At the high
level, it takes the causal graph database (𝐺𝐷𝐵) and an incoming
event (𝐸) as the input, and adds 𝐸’s subject and object to the causal
graph database as two vertices. At the same time, the algorithm
calculates and updates 𝑃𝐴𝑇𝐻

abnormal
, which represents the most

suspicious paths that end with the object of 𝐸. The time complexity
of updating the 𝑃𝐴𝑇𝐻

abnormal
is O(1).

The first step of the tracking algorithm is to check if the subject
and the object of the event exist in the 𝐺𝐷𝐵 (lines 1-2). Retreive-
OrCreate does this work. Given the system entities (the subject or
the object), RetreiveOrCreate tries to first fetch it from the main
memory. If the system entity does not exist in the main memory,
RetreiveOrCreate tries to fetch it from the disk. If the system
entity still does not exist in the hard disk, RetreiveOrCreate will
create a new entry in the causal graph database.

Once the subject and object have been retrieved, Swift updates
the parent and child list for the subject and object based on edge
relationship 𝑅𝑒𝑙 (lines 4 - 5 and lines 12 - 13). Then it updates the
𝑃𝐴𝑇𝐻

abnormal
list of the children (lines 6 - 9 and lines 16 - 19). To

do so, Swift enumerates each element in the 𝑃𝐴𝑇𝐻
abnormal

of the
subject (line 6), calculates a score from each element in the subject’s
𝑃𝐴𝑇𝐻

abnormal
(line 7) and updates the 𝑃𝐴𝑇𝐻

abnormal
of the object

with the new score, the relative ranking the in subject (𝐼𝑛𝑑𝑒𝑥 ), and
the new time stamp of the event (line 8). Finally, Swift updates the
𝐺𝐷𝐵 of the subject and the object in the main memory.

Algorithm 2: TrackObject
Inputs :𝐺𝐷𝐵, 𝐸

1 𝑆𝑢𝑏 = RetreiveOrCreate(𝐸.𝑠𝑢𝑏,𝐺𝐷𝐵)
2 𝑂𝑏 𝑗 = RetreiveOrCreate(𝐸.𝑜𝑏 𝑗 ,𝐺𝐷𝐵)
3 if 𝐼𝑠𝑃𝑎𝑟𝑒𝑛𝑡 (𝑆𝑢𝑏, 𝐸.𝑅𝑒𝑙) then
4 𝑆𝑢𝑏.AddChild(𝑂𝑏 𝑗 )
5 𝑂𝑏 𝑗 .AddParent(𝑆𝑢𝑏)
6 for 𝐼𝑛𝑑𝑒𝑥 , (𝑃, 𝑆, 𝑡, 𝑅) ∈ 𝑆𝑢𝑏.𝑃𝐴𝑇𝐻𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 do

7 𝐶ℎ𝑖𝑙𝑑𝑆𝑐𝑜𝑟𝑒 = CalculateScore(𝑆 ,𝑆𝑢𝑏,𝑂𝑏 𝑗 , 𝐸)
8 𝑂𝑏 𝑗 .AddToPath(𝑆𝑢𝑏,𝐶ℎ𝑖𝑙𝑑𝑆𝑐𝑜𝑟𝑒, 𝐸.𝑡, 𝐼𝑛𝑑𝑒𝑥 )
9 else

10 𝑂𝑏 𝑗 .AddChild(𝑆𝑢𝑏)
11 𝑆𝑢𝑏.AddParent(𝑂𝑏 𝑗 )
12 for 𝐼𝑛𝑑𝑒𝑥 , (𝑃, 𝑆, 𝑡, 𝑅) ∈𝑂𝑏 𝑗 .𝑃𝐴𝑇𝐻𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 do

13 𝐶ℎ𝑖𝑙𝑑𝑆𝑐𝑜𝑟𝑒 = CalculateScore(𝑆 ,𝑆𝑢𝑏,𝑂𝑏 𝑗 , 𝐸)
14 𝑆𝑢𝑏.AddToPath(𝑂𝑏 𝑗,𝐶ℎ𝑖𝑙𝑑𝑆𝑐𝑜𝑟𝑒, 𝐸.𝑡, 𝐼𝑛𝑑𝑒𝑥 )
15 𝐺𝐷𝐵.Update(𝑆𝑢𝑏)
16 𝐺𝐷𝐵.Update(𝑂𝑏 𝑗 )
17 return

The time complexity of Algorithm 2 is O(1). Since we have lim-
ited the size of the 𝑃𝐴𝑇𝐻

abnormal
as a constant, the time complexity

of the loop between line 5 and line 8 is constant. Due to the same
reason, the time complexity of AddToPath is also O(1). After each
epoch Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 , Swift evicts system objects (vertices) from track-
ing cache to the suspicious cache if they have not been accessed
in the last epoch. Vertices that have been accessed during the past
epoch are retained in the tracking cache for the next epoch.

6.2 Suspicious Cache

After being evicted from the tracking cache, vertex entries are
moved to the suspicious cache. The goal of the second cache is to
retain vertex entries for all vertices that fall on the Top 𝐾 most
suspicious causal paths throughout the history of system execu-
tion. The intuition behind the suspicious cache is based on the
Hypothesis H2.
H2 Most Suspicious Causal Paths Hypothesis. If a path in

the causal graph contains multiple suspicious (anomalous)

events, it is much more likely to be associated with a true

attack.

Recent studies provide evidence for this hypothesis, and in fact
are the inspiration for the present study – Hassan et al. [41] present
an alert triage system that ranks alerts based on the aggregate
anomalousness of their causal paths, observing that this approach
can be used to eliminate 84% of false alerts from a commercial Threat
Detection Softwares (TDS). Liu et al. [57] present an optimization
for forward trace queries that prioritizes the search of anomalous
paths in order to construct attack graphs more quickly. While these
results are encouraging, both of these systems rely on disk-based
graph storage and are thus subject to extremely high latencies when
traversing causal graphs; our observation is that this hypothesis
can also inform the design of a forensic cache. Because true attacks
are likely to fall on the most suspicious (anomalous) causal paths,
our system should prioritize the retention of events associated with
such paths. This will increase the likelihood that all forensically-
relevant information will exist in main memory at the time of the
investigation.
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The specific goal of the suspicious cache is to retain vertices that
appear in the Top 𝐾 most suspicious causal paths; we call this set
of 𝐾 paths the Global List (GL). Each element in Global List is a pair
(𝑉 , 𝑅), where 𝑉 is a vertex in the causal graph database and 𝑅 is
the index of the causal path in 𝑉 ’s 𝑃𝐴𝑇𝐻

abnormal
list. As discussed

in Section 5, we can recover the full causal path efficiently with this
pair.

For a causal path 𝑃 to be in GL, 𝑃 must meet three conditions:
(1) the suspicious influence score of 𝑃 is among the top K most
suspicious paths in history; (2) 𝑃 is not a sub-path of another causal
path (e.g., the path {𝐵 → 𝐴} in Figure 4 could not be in GL because
it is a sub-path of {𝐵 → 𝐴→ 𝐷}; and (3) 𝑃 is in the 𝑃𝐴𝑇𝐻

abnormal

of at least one 𝑣𝑒𝑟𝑡𝑒𝑥 . The third condition alleviates a possible
“spoofing attack” that spoils the cache of Swift, which we discuss
in Section 9.

6.2.1 Suspicious Cache Eviction Policy. Based on the Hypothe-
sis H2, Swift maintains the top-K most suspicious causal paths
in the memory to support low-latency attack investigation. To
achieve this goal with our two-layer cache design, we introduce
a time-window Δ𝑇𝑒𝑣𝑖𝑐𝑡 to evict objects from suspicious cache and
GL to the disk. At a pre-defined time interval, Δ𝑇𝑒𝑣𝑖𝑐𝑡 , Swift asyn-
chronously runs an eviction algorithm to move the vertices that
are not contained in a GL path to the disk. Algorithm 3 outlines the
high-level steps of the eviction process from suspicious cache to
the disk. Its inputs are GL and suspicious cache. The algorithm first
enumerates every tuple in GL, recovering the causal path from the
tuple using Algorithm 1. Then, for each vertex in the recovered path,
it taints the vertex as “TO_KEEP” (lines 1 - 5). After the tainting
process, Swift evicts the key-value pairs in the 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐶𝑎𝑐ℎ𝑒
that do not have the “TO_KEEP” taint (lines 6 - 11). Note that
Algorithm 1 accounts for possible cycles in the graph.

6.2.2 Correctness. The equation we use for suspicious influence
scoring in Swift’s implementation is given by Equation 1 in Section
8. Based on the Cumulativity this equation, the time complexity of
CalculateScore is also O(1). The correctness of Algorithm 2 is
guaranteed by the Monotonicity and the Temporality of Equation 1.
Due to the Temporality of Equation 1, Algorithm 2 only needs to
update the 𝑃𝐴𝑇𝐻

abnormal
for the object. It does not need to further

propagate the suspicious influence score to the successors. Due
to the Monotonicity, the new top𝑚 most suspicious paths of the
object can only be from the old 𝑃𝐴𝑇𝐻

abnormal
of the object or the

new causal paths generated from the top𝑚 most suspicious paths
of the subject. Thus, to calculate the new 𝑃𝐴𝑇𝐻

abnormal
, it is safe

to only enumerate the items in 𝑃𝐴𝑇𝐻
abnormal

of the subject.
Complexity. Our eviction algorithm runs in O(𝑁 ) time complex-
ity, where 𝑁 is the total number of vertices present in the main-
memory, since it has to taint all the vertices which belong to the
Global List path and evict the vertices that do not belong to the
Global List path.

7 ALERT MANAGEMENT

The alert management layer provides three fundamental capabil-
ities: context-based alert triage, alert correlation, and suspicious
causal graph generation. These capabilities are based on Swift’s
HSM which allows them to be real-time. Context-based alert triage

Algorithm 3: Eviction
Inputs :𝐺𝐿, 𝑆𝑢𝑠𝑝𝑖𝑐𝑜𝑢𝑠𝐶𝑎𝑐ℎ𝑒

1 for (𝑉 , 𝑅) ∈𝐺𝐿 do

2 𝑃𝐴𝑇𝐻= PathDiscover(𝑉 , 𝑅)
3 for 𝑁 ∈ 𝑃𝐴𝑇𝐻 do

4 Taint(𝑁 )
5 for < 𝐾,𝑉 > ∈ 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝐶𝑎𝑐ℎ𝑒 do
6 if CheckNotTaint(< 𝐾,𝑉 >) then

7 EVICT(< 𝐾,𝑉 >)
8 return

is achieved by the propagating and storing of suspicious influence
scores along with each causal path in the database. Note that the
suspicious influence scores are calculated during online tracking
(Algorithm 2). As discussed previously, the greater the suspicious
influence score of an alert, the more suspicious that alert will be
and should therefore be investigated first. As soon as alerts are
fired during threat hunting process (shown in Figure 1), Swift iter-
atively sorts alerts based on suspicious influence scores. In the alert
management stage, Swift only needs to retrieve the previously-
calculated suspicious influence scores from the HSM, assuring that
alert triage can occur in real-time.

Alert correlation and concise causal graph generation are realized
automatically by our HSM design. Swift uses the suspicious cache
to retain the causal paths of those previously triggered alerts that
have higher suspicious influence scores. To correlate two alerts,
Swift only needs to query the suspicious cache to figure out if
the most recently triggered alert’s causal path is associated with
any alerts that were triggered in the past. To support causal graph
generation, Swift provides two types of queries to retrieve the
causal graph of alerts: concise queries and complete queries. The
concise query returns the most suspicious causal subgraph related
to an alert, which is stored entirely in the suspicious cache. The
complete query returns the whole causal graph by fetching paths
from both the suspicious cache and, if needed, the disk.

8 EVALUATION

In this section, we focus on evaluating the efficacy, usefulness, and
scalability of Swift as a real-time forensic analysis in an enter-
prise. In particular, we investigated the following research questions
(RQs):
RQ1 How effective is Swift in threat alert investigation?
RQ2 What are the insights into the events that are cached vs

spilled to disk by Swift?
RQ3 How scalable is Swift?
RQ4 Can the time saved using Swift help an enterprise to thwart

an attack?
RQ5 How efficient is Swift at alert management?

8.1 Implementation

We implement Swift for an enterprise environment and collected
system event logs generated by Windows ETW [3] and Linux Au-
ditd [4] using Kafka producers.Wewrote our own consumer threads
to fetch audit logs from Kafka producers. Swift uses the Guava
Cache by Google [17] to maintain the causal graph database in
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the main-memory. This cache supports timed eviction and asyn-
chronous batch writes. Swift uses RocksDB [27] as the persistent
key-value storage. The batch mode in RocksDB provides high rate
for read and write.

In our implementation, we use themethod proposed byHassan et
al. [41] to calculate the suspicious influence score because it satisfies
all the three properties mentioned in Section 4.2. Particularly, for a
causal path 𝑃 , we calculate its Suspicious Influence Score 𝑆𝐼𝑆 (𝑃)
with Equation 1.

𝑆𝐼𝑆 (𝑃 ) = 1 −
𝑙∏

𝑖=1

𝐼𝑁 (𝑆𝑅𝐶𝑖 ) ×𝑀 (𝜀𝑖 ) ×𝑂𝑈𝑇 (𝐷𝑆𝑇𝑖 ) × 𝛼 (1)

The details about the above-mentioned equation can be found
in [41]. At a high-level, 𝐼𝑁 and 𝑂𝑈𝑇 are two vectors that quantify
the likelihood that the vertex is a source or destination of informa-
tion flow, respectively. 𝑀 is the transition probability from 𝑆𝑅𝐶𝑖
vertex to 𝐷𝑆𝑇𝑖 vertex. 𝛼 is a normalization factor. 𝐼𝑁 , 𝑂𝑈𝑇 , 𝑀 ,
and 𝛼 are parameterized based on observations of historic benign
data from the enterprise deployment. This equation satisfies all
three properties mentioned in Section 4.2. Cumulativity is satisfied
because this equation calculates score of each event by taking the
product of all previous events’ aggregate score and the new event’s
score. Temporality is preserved because the product is taken over
a causal path, which is sorted temporally by definition. If a new
event is added to two paths, the subtraction of their 𝑆𝐼𝑆 (𝑃) will be
multiplied by the same factors, which will not change their orders.
Therefore, monotonicity is satisfied.

8.2 Experiment Setup

We collected system events and threat alerts at NEC Labs America.
In total, we monitored 191 hosts (51 Linux and 140 Windows OS)
for 10 days. We deployed Swift on a server with Intel® Xeon(R)
CPU E5-2660 @ 2.20GHz and 64 GB memory running Ubuntu 16.04
OS. We connected Swift to ASI [13], a commercial anomaly-based
TDS, to generate alerts. During the engagement, we injected 10
APT attacks over a period of 10 days. These APT attacks were
designed by expert analysts employed at NEC Labs America. A
short description of these attacks is shown in Table 1. On each day
we injected one attack, except for 3 attacks (Datatheft, ShellShock,
and Netcat backdoor) which were ran on the same day.

We collected more than 1 TB worth of audit logs with around 1
billion system events from 191 hosts over period of 10 days. The
APT attack traces constitute less than 0.0005% of the total audit logs
collected from the enterprise. Meanwhile, we also monitored these
logs with a commercial TDS [13]. This underlying TDS generated
140 threat alerts over a period of 10 days. Out of these 140 alerts,
12 were true alerts generated by our simulated APT attacks, while
the rest were false alerts.

To evaluate Swift against a baseline approach, we re-implement
NoDoze based on its description in [41]. We chose this as a base-
line because it is one of the most recent offline approach that can
perform: 1) suspicious score assignment, 2) automated alert triage
and 3) causality graph generation. Further, our decision to imple-
ment Swift using NoDoze’s suspicious influence scoring algorithm
permits an apples-to-apples comparison when evaluating Swift’s
HSM. We used 20 consumer threads to consume audit logs from

Kafka producers and then we performed forensic analysis in real-
time. Note that 20 threads is also the maximum number of threads
supported by the machine we use in our evaluation.

Parameters. We set Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 = 800 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , GL size 𝐾 = 3000,
𝑃𝐴𝑇𝐻𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 size 𝑚 = 𝐾/3, and Δ𝑇𝑒𝑣𝑖𝑐𝑡 = 1600 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 in all
experiments unless we explicitly note otherwise. We chose these
values because they generate the optimal throughput and can hold
all the suspicious data in our enterprise. However, we also discov-
ered that it is flexible to choose the parameters for Swift since
the throughput is not heavily affected by the value of the parame-
ters. A detailed discussion of how we derived these values for this
enterprise environment is included in Appendix A.1.

RQ1: Effectiveness in Alert Investigation

To answer this question, we used Swift to generate the most suspi-

cious causal graph for all 140 threat alerts, measuring the response
time for answering each causal graph query. We issued each query
at the end of the day, not immediately following the attack, which
ensured: 1) all attack related events had been evicted from the track-
ing cache, and were thus either in the suspicious cache or on disk; 2)
a steady state for the HSM where all promotion and eviction cycles
were completed for that day. We manually verified the fidelity of
Swift’s causal graph for each alert against the graphs generated
by the baseline approach, checking that Swift returned all of the
critical events necessary to explain the attack.

The results for Swift are shown in Figure 6; Swift was able
to respond in less than one second for 80% of the alerts because
of our novel suspicion-based HSM. In total, Swift took less than
two minutes to generate the concise causal graphs for all alerts. We
compare these results to the baseline approach in Figure 7, noting
that the scale on the x-axis has changed from seconds to minutes.
It took more than 1 hour for the baseline approach to process the
same set of alerts. Moreover, the baseline approach took more than
three minutes for 40% of the alerts and more than 20 minutes for
25% of the alerts, in the worst case taking more than an hour to finish.
Such a slow response time is problematic, especially considering
realistic scenarios in which the processing latency for one alert
adds to the queuing latency of hundreds of other alerts in the stack
(discussed more in RQ3).

A breakdown of performance results for each attack are shown
in Table 2. The rightmost columns show the response time for the
baseline method, Swift, and observed speedup. In all cases, Swift
generated the causal graph for the attack in less than 3 milliseconds,
whereas the baseline required nearly 5 minutes in the worst case.
Comparing the two techniques, we observe a speed up of up to 1.3

million times (Shellshock). In spite of the performance increase,
it may at first glance seem that the performance of the baseline
approach is acceptable. One reason for this is that the underlying
TDS used in our experiments itself maintained a 15GB event cache
that was able to store part of the attack provenance for the baseline
(compare this to the 300MB cache required by Swift, which we
will show in Section 8.2). More importantly, a limitation of our
evaluation is that it does not capture longitudinal attack patterns
that are commonly observed in-the-wild, e.g., the 4.5 month attack
window of the Equifax breach [29]. In such circumstances, the TDS
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Table 1: APT attack scenarios used in our evaluation with short their descriptions.

Attacks Short Description

VPNFilter [10] An attacker used known vulnerabilities [7] to penetrate into an IoT device and overwrite system files for persistence. It then
connected to outside to connect to C2 host and download attack modules.

Redis-Server Example case study in Section 8.2
wget-gcc [74] Malicious source files were downloaded and then compiled.
WannaCry [9] An attacker exploits EternalBlue [20] vulnerability in enterprise to gain access to machines and then attacker encrypts data

on those machines.
Data Theft [57] An attacker downloaded a malicious bash script on the data server and used it to exfiltrate all the confidential documents on

the server.
ShellShock [7] An attacker utilized an Apache server to trigger the Shellshock vulnerability in Bash multiple times.

Netcat Backdoor [8] An attack downloaded the netcat utility and used it to open a Backdoor, from which a Persistent Netcat port scanner was
then downloaded and executed using PowerShell

Cheating Student [61] A student downloaded midterm scores from Apache and uploaded a modified version.
passwd-gzip-scp [74] An attack stole user account information from passwd file, compressed it using gzip and transferred the data to a remote

machine
Jeep-Cherokee [64] An attack remotely exploits in-car information system and gains control over physical components (e.g., wheels, breaks,

engines) by sending out commands via CANBUS.
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Figure 6: Response times in seconds to return concise causal graphs

of threat alerts using Swift.
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Figure 7: Response times in minutes to return concise causal graphs

of threat alerts using Swift as compared to NoDoze (baseline). Note

that the Swift CDF is the same as in Figure 6 on a different scale.

cache would be useless and the baseline may take hours or days to
process individual alerts.
Reasons for Milli-second Level Response Time. To further investi-
gate the reason for the time reduction, we also studied what was
maintained in the memory for these attacks. In Table 2, the col-
umn “All Events” represents all enterprise-wide system events col-
lected while “Critical Events” represents only attack-related events.
“%Cached” shows the percentage of events cached in the memory
end of the day. Our experiment shows that Swift had a much lower
response time because it effectively cached most of the events that

were related to attacks in the main memory even if the size of the
cache was small compared to the size of total events. Particular, on
average, by maintaining about 0.04% of total events of a day, Swift
can maintain on average 90% of attack-related events in its cache. In
other words, Swift was able to significantly reduce disk IOs while
generating causal graphs for attacks. This result also validates our
Hypothesis H2. Reasons for why Swift cannot maintain 100% of
the attack-related events in its cache will be discussed in RQ2.

RQ2: Insights into Cached vs Spilled Events

To further study how causal events are handled in the Swift HSM
(i.e. which events are cached, as opposed to being spilled to disk),
we select a ransomware attack as a case study from the 10 attacks
in Table 2. In this attack, a misconfigured Redis server [25] allows
an attacker to log into the server via the ssh service as root [23].
The attacker first connects directly to a misconfigured Redis server
over its default port, executes the Flushall command to erase the
whole database, uploads their ssh key to the database, then obtains
root access to the server by using CONFIG to copy the database to the
root’s .ssh directory and renaming it to authorized_keys. Once in
the enterprise network, the attacker moves laterally in their search
for valuable data while simultaneously encrypting data by running
an encryptor that was downloaded from their remote server. Time

is crucial in this scenario – the earlier we investigate and respond to

the attack, the more valuable data we can save.

This attack generated two alerts which are marked in red dashed
arrows in Figure 8. However, these true alerts are among a deluge
of unrelated false alerts being generated by TDS, making it criti-
cal to quickly identify the true alerts and take actions to prevent
damages. Fortunately, Swift assigns suspicious influence scores in
real-time; when Alert 1 arrives, Swift automatically remembers
its suspiciousness score and propagates this score to its successors.
When Alert 2 fires, Swift combines the suspiciousness influence
scores fromAlert 1 in O(1) time. This means that as soon asAlert
2 is fired by TDS, Swift can instantaneously generates the most
suspicious causal graph and correlate the alerts.

Figure 8 shows the simplified causal graph of this attack. In
this graph, we use diamonds to represent sockets, oval nodes to

9



Table 2: Comparison of Swift’s effectiveness against baseline. “#Alerts” shows how many alerts are associated with the particular attack.

Attacks Reference #Alerts

All Events Critical Events Response Time

Total %Cached Total %Cached Baseline Swift Speedup

VPNFilter NoDoze [41] 1 150M 0.06% 15 100% 0.5 min 0.65 ms 46,000×
Redis-Server Case Study Sec. 8.2 2 100M 0.07% 29 86% 1.1 min 0.1 ms 660,000×

wget Xu et al. [74] 1 160M 0.03% 15 100% 0.7 min 1.1 ms 28,000×
WannaCry NoDoze [41] 2 139M 0.05% 21 90% 1.5 min 0.2 ms 450,000×
Data Theft PrioTracker [57] 1 366M 0.04% 13 88% 3 min 0.3 ms 600,000×
ShellShock CVE-2014-6271 1 366M 0.04% 25 82% 2 min 0.09 ms 1,333,000×

Netcat Backdoor Backdoor [8] 1 366M 0.04% 14 85% 1.8 min 0.8 ms 135,000×
Cheating Student ProTracer [61] 1 336M 0.03% 37 94% 2.1 min 1.9 ms 66,000×
passwd-gzip-scp Xu et al. [74] 1 335M 0.02% 25 90% 4.6 min 2.8 ms 98,000×
Jeep-Cherokee Exploit Vehicle [64] 1 129M 0.06% 16 94% 1.2 min 1.2 ms 60,000×
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Figure 8: Simplified causal graph of the simulated ransomware attack. Swift keeps part of the causal graph related to the ransomware attack

in the main-memory (red vertices), and part of that graph (yellow vertices) is spilled to the disk. Causal graph not related to the attack (green

vertices) is spilled to the disk.

represent files, and boxes to represent processes. In Figure 8, the red
vertices represent the most suspicious causal graph which is cached
in the main-memory. Yellow vertices are related to attack but spilled
to disk while green vertices are not related to attack (benign) which
are also spilled to disk. Due to dependency explosion problem
(false dependency) [61] benign vertices become part of attack’s
causal graph. Swift shows the most suspicious graph (red vertices)
to cyber analyst accelerate investigation and assist cyber analyst
to quickly identify the root cause (X.X.X.X connection to process
Redis-server) and ramification (Sensitive.tar read by process scp)
of this attack using this subgraph.

As can be seen in Table 2, 14% of attack-related vertices (yellow
vertices) were spilled to the disk. The main reason for this was our
conservative Global List size (𝑘 = 3000); these attack-related ver-
tices fell outside of the top-k most suspicious paths, leading to their
eviction from the suspicious cache.We found in our experiments that

increasing the Global list size from 𝑘 = 3000 to 𝑘 = 5000 was suffi-

cient to store 100% of attack-related vertices in the cache. In consider-
ing the 𝑘 = 3000 configuration, some temporary files created by the
Redis-server process, such as /redis-3.0.3/temp-18434.rdb, are as-
signed low suspicious scores because redis regularly creates many

such files. However, the temporary file ∼/.ssh/temp18434.rdb was
highly unusual because Redis-server never writes to the ∼/.ssh
folder. As a result, it had a high suspiciousness score and was
retained in cache. Note that missing some temporary files from
the causal graph does not break causal analysis since we can still
identify the root cause and ramifications using red vertices alone.
Further, cyber analysts can still retrieve these yellow vertices from
disk later for further investigation.

RQ3: Scalability

Throughput. We define the throughput of Swift as the maxi-
mum number of events that Swift can process under different
configuration values of the global list size 𝑘 , the eviction time win-
dow Δ𝑇𝑒𝑣𝑖𝑐𝑡 , the promotion epoch Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 , and the number of
threads. To stress test Swift, we replayed the audit logs from our
enterprise engagement at the maximal speed. The results of our
throughput experiment are shown in Figure 9. Since our eviction
algorithm is asynchronous, the throughput does not change under
different configurations except when we change the number of
consumer threads. We can see that Swift can process up to 100,000
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Figure 9: Throughput of Swift under different configuration values.
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Figure 10: Max. memory usage of Swift under different configuration values when ran for one day. TC stands for tracking cache and SC

stands for suspicious cache.

events/sec when the number of threads is 20, which was the max-
imum number of threads allowed by our machine. Note that, in
our experiment, each of the 191 hosts generated less than 5,000
events/sec on average, which is far less than the maximal through-
put of Swift. Assuming that this event generation rate holds, our
prototype implementation of Swift can scale to support up to 4,000

hosts with a single server.

Memory Usage. Another aspect of scalability is memory usage.
In our implementation of Swift, memory is consumed by two
components: the Kafka framework and the cache for events. Since
Kafka is only used as a black-box infrastructure in our implementa-
tion and could have very different configurations in practice, we
focus on the memory usage of the cache. In our experiment, we
first measured the maximum memory used by both tracking cache
and suspicious cache under different configuration values while
monitoring all the 191 hosts for one day. The results are shown in
Figure 10. Changing global list size and threads does not affect the
maximum usage of tracking cache and suspicious cache. Increasing
the Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 increases the size of tracking cache because events
stay longer there. On the other hand, increasing Δ𝑇𝑒𝑣𝑖𝑐𝑡 window
increases the suspicious cache usage since eviction algorithm runs
after long time. Our experiment shows that in general, Swift could
process the workload for 191 hosts in an enterprise with 300 MB
memory. For a server with 64 GB memory, as we have used in our
experiment, it is possible to handle thousands of hosts at the same
time.

RQ4: Benefits of Time Saved

Using causal analysis in state-of-the-art alert triage systems [41],
it takes on average 1 min to respond to forensic queries, with a
worst case performance of 2.5 hours; because response time grows
linearlywith graph size, we can expect alerts related to sophisticated
intruders to fall closer to this worst-case because they employ a
“low and slow” attack approach. On the other hand, Swift responds
to queries in just 0.1 sec on average, with worst case performance of
1 minute. This effectively provides investigators with alert context
(i.e., causal graphs) as soon as the alert is triggered.

Still, it could be argued that an average response time of 1 minute
(as opposed to Swift’s 100 milliseconds) is suitably fast for cyber
analysts. However, it is important to consider the fact investigation

latency compounds as the number of alerts increases. Recent stud-
ies [12, 18, 22] have shown that organizations receive around 10,000
alerts per week. For simplicity, let us assume that all 10,000 alerts
need to be investigated,5 and that a true attack falls at each quar-
tile (i.e., alerts 2500, 5000, etc.) of the stack. For the first quartile,
NoDoze [41] imposes at least 41 hours of latency due to causal
analysis, while Swift will impose just 4 minutes of latency. By
the last quartile, NoDoze will have imposed 166 hours of latency,
while Swift introduces just 16 minutes. Further, we can assign a
financial cost to this difference – studies have shown that it costs

5In practice, alert triage systems may be used to condense or procedurally exclude
some alerts so that they need not be investigated; however, this exercise demonstrates
the value of eliminating causal analysis latency from the threat investigation process.
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an organization $32,000 for every day an attacker stays in the net-
work [36]. Thus, for just the attack in the last quartile, Swift could
save the organization up to $221,244 as compared to the previous
state-of-the-art.

RQ5: Effectiveness in Alert Management

To answer this research question, we measured the performance
and accuracy of Swift as an alert management system. We used
HSM’s suspicious influence scores for all the alerts and triaged
alerts based on scores. After that we compared our accuracy and
performance with the baseline approach [41]. Since our suspicious
influence scores were similar to the baseline approach, Swift has
the same accuracy (false and true positive rates) as the baseline
approach. However, the performance of Swift is magnitudes of
times better than baseline.

The performance of Swift over the baseline approach is mea-
sured in terms of response time. As we have already shown in the
CDF in Figure 7 that it took total of 5 hours to rank all the 140 alerts
using baseline. The reason for this is that baseline as an offline
approach first generate the causal graph using disk storage for each
alert. After that, it assigns suspiciousness influence scores to each
alert’s graph and then triage them based on these scores. On the
other hand it took Swift around 1 minute to rank all the 140 threat
alerts because it generates causal graph in an online fashion and
assigns suspiciousness influence scores as events arrive and keeps
most suspicious causal graphs in the main-memory. Thus, as soon
as alerts are fired by underlying TDS, Swift already has its graph
with suspiciousness score and just need to lookup this score from
the cache to triage which O(1) time. Since Swift also keeps track
of all the alerts fired on causal graph, it instantaneously correlates
new alert with all the previous alerts that are causally related.

9 DISCUSSION & LIMITATIONS

Design of suspicious influence scoring system. Swift is effective
with an arbitrary suspicious influence scoring system that satisfies
all three properties described in Section 4.2. In Section 8.1, we
implemented an anomaly-based scoring system as the reference
in our evaluation. Other scoring systems, such as rule-based or
label-propagation-based systems, can also be applied as long as
they meet the three requirements.
Possible Attacks. One possible attack to spoil the cache of Swift
is by exploiting Hypothesis H1 – the adversary may conduct an
attack in a longer time window so that the causal paths of the attack
in the cache are eventually replaced by causal paths of other attacks
and suspicious activities. This attack can be alleviated by allocat-
ing large memory (Global List size). As long as there is enough
space, Swift will maintain the suspicious causal paths in the cache.
If there is not enough memory space, choosing which suspicious
paths to keep in the cache would be a trade-off. We leave this dis-
cussion for our future work. Adversaries may also try to spoil the
cache of Swift by generating anomalous events and causal paths
in provenance data. This can be solved by having more accurate un-
derlying anomaly detection techniques. In this paper, we apply one
commercial tool [13] to detect anomalies. Although it is important
to improve the accuracy of anomaly detection, it is orthogonal to
our study. Nevertheless, even if the cache is spoiled, an investigator

can still generate a complete causal graph but with some delay due
to disk IO.

Adversaries may try to spoil the cache system of Swift to degen-
erate its responsiveness by having a “spoofing attack”. The adver-
sary may conduct an attack that contains a vertex that is involved
in more than K most suspicious paths to occupy the whole global
list (e.g. unzipping more than K files from a .ZIP package). Under
the “spoofing attack,” causal paths of other vertices are evicted to
the disk so the performance of Swift to investigate other vertices is
degraded to existing offline solutions. To address this attack, Swift
only selects candidates from the 𝑃𝐴𝑇𝐻

abnormal
of each vertex. Since

the size of 𝑃𝐴𝑇𝐻
abnormal

of each vertex is limited to𝑚, each vertex
will only occupy at most𝑚 slots in the global list.

Another type of spoofing attack is that the adversary may gen-
erate a lot of different suspicious events to occupy the cache. Since
we keep the longest path in the cache, the adversary needs to gen-
erate a huge number of independent suspicious events, which
do not have causal dependencies, to spoil the cache. However, if
an attacker tries to produce a lot independent suspicious events
then it defeats the “low and slow” strategy used by attackers and
generates a strong indication of an attack which a threat hunter
can immediately spot. Moreover, this problem is equivalent to the
problem of having too many suspicious paths that the cache cannot
hold, which we leave for future work.

Applicability. The Swift approach is generic to provide broad
support for fast and interactive threat hunting in enterprises pro-
vided that system-level audit logs are being collected and there
is an underlying threat detector which monitors enterprise-wide
activities. The two key hypotheses presented in Section 6, upon
which Swift is built, are enterprise agnostic. These hypotheses
are derived from fundamental characteristics of system-level au-
dit logs [3, 4]. This ensures that our techniques can be applied in
different enterprises without sacrificing performance and accuracy.

10 CONCLUSION

Threat hunting using causality analysis has an insatiable demand for
high throughput and low latency investigation queries. In this paper,
we present Swift, an online causality tracker that directly works
on audit logs provided from commodity systems in an enterprise.
Swift is capable of identifying in-progress threats and provides
quick investigation capabilities to a cyber analyst before serious
damage is inflicted. We implemented Swift in 7k LoC of Java and
deployed at NEC Labs America. Our evaluation results show that
Swift can precisely capture all the causality related to the true
attacks and store them in the main-memory which subsequently
speeds up after-the-fact investigation.
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A APPENDIX

A.1 Optimal Parameters

Swift has three configurable parameters:Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 , Global list size
𝑘 , and Δ𝑇𝑒𝑣𝑖𝑐𝑡 . In this section, we evaluate our reasons of choosing
the optimal configuration in our experiments.

A.1.1 Promotion Epoch. The Epochal Causality Hypothesis H1 for
causal graph pattern access states that we need to keep events for
a certain epoch (Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 ) in the tracking cache to minimize the
miss ratio of the main-memory for causal events. So, in order to
find the promotion epoch Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 for our enterprise dataset, we
set out to experiment with different Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 . Intuitively, larger
the Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 means that our tracking cache miss ratio will be
less; however, this also means that we will be keeping more events
in the tracking cache. So essentially we need to find a sweet spot
between miss ratio and maximum size of tracking cache. Therefore,
we define the tracking cache (TC) utilization as follows:

𝑇𝐶𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑠𝑠𝑟𝑎𝑡𝑖𝑜 ×𝑀𝑎𝑥𝑒𝑣𝑒𝑛𝑡𝑠
In the above equation, we multiple the miss ratio by max events

that are present in tracking cache during each run to get utilization.
Our results are shown in the Figure 11. We can see that with 800
sec we get maximum utilization where we have both low miss ratio
and low maximum TC size.
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Figure 11: Finding optimal Promotion Epoch Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 for our ex-

periment dataset.

A.1.2 Global List Size. Global list size 𝑘 is directly correlated with
number of most anomalous paths any enterprise wants to store
in the main-memory. Given an enterprise with larger resources
can potentially store more anomalous paths in the main-memory
which can accelerate the investigation of threats alerts later. One

thing that is affected by the large global list size is the time to
complete each eviction cycle after every Δ𝑇𝑒𝑣𝑖𝑐𝑡 time windows as
shown in the Figure 12a. However, since our eviction algorithm is
asynchronous it does not affect the throughput of our system.
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Figure 12: Effect of changing global list size on average time to com-

plete on eviction cycle and max number of events in the suspicious

cache (SC) after eviction.

Another factor that can be used to find out required global list
size for an enterprise is the number of alerts that are generated by
enterprise’s underlying TDS. Since these threat alerts are related
to anomalous behaviour, by storing large global list size we can
store more information regarding these alerts in the main-memory
all the time. NEC Labs America generated 300 threat alerts per
day. Since our attack dataset spans over 10 days we set the global
list size to be 3000 so that we can store at least 10 days of threat
alerts’ provenance data in the main-memory. Figure 12b shows
how increasing the global list size increased the overall size of
main-memory.

A.1.3 Eviction Window. We run eviction algorithm after every
Δ𝑇𝑒𝑣𝑖𝑐𝑡 time window. Greater the eviction window time, the greater
Swift will take to complete one eviction cycle as shown in the
Figure 13. However, since our eviction algorithm is asynchronous
it does not matter how much time it takes to complete one eviction
cycle. For experiments we picked Δ𝑇𝑒𝑣𝑖𝑐𝑡 = 1600 since it worked
well during our deployment; however, any value of Δ𝑇𝑒𝑣𝑖𝑐𝑡 can be
picked by the user as long as it is after Δ𝑇𝑝𝑟𝑜𝑚𝑜𝑡𝑒 time window.
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Figure 13: Effect of changing Δ𝑇𝑒𝑣𝑖𝑐𝑡 on average time to complete on

eviction cycle.
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